RISK ASSESSMENT

A Practical Guide to Assessing Operational Risks

Edited by
GEORGI POPOV
BRUCE K. LYON
BRUCE HOLLcroft

WILEY
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
<tr>
<td>Foreword</td>
<td>xxi</td>
</tr>
<tr>
<td>List of Contributors</td>
<td>xxiii</td>
</tr>
<tr>
<td>About the Companion Websites</td>
<td>xxv</td>
</tr>
<tr>
<td>1 Risk Assessments: Their Significance and the Role of the Safety Professional</td>
<td>1</td>
</tr>
<tr>
<td>Fred A. Manuele</td>
<td></td>
</tr>
<tr>
<td>1.1 Objectives, 1</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Introduction, 1</td>
<td>1</td>
</tr>
<tr>
<td>1.3 What is a Risk Assessment?</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Activities at the American Society of Safety Engineers (ASSE)</td>
<td>2</td>
</tr>
<tr>
<td>1.5 An Example of a Guideline that gives Risk Assessment due Recognition</td>
<td>3</td>
</tr>
<tr>
<td>1.7 ANSI/ASSE Z590.3-2011: Prevention through Design: Guidelines for Addressing Occupational Hazards and Risks in Design and Redesign Processes</td>
<td>4</td>
</tr>
<tr>
<td>1.8 THE ANSI/ASSE Z690-2011 Series, 6</td>
<td>6</td>
</tr>
<tr>
<td>1.9 ANSI B11.0-2015: Safety of Machinery. General Safety Requirements and Risk Assessment – A Standard of Major Consequence, 7</td>
<td>7</td>
</tr>
<tr>
<td>1.10 European Union: Risk Assessment, 8</td>
<td>8</td>
</tr>
<tr>
<td>1.11 EN ISO 12100-2010: Safety of Machinery. General Principles for Design, Risk Assessment, and Risk Reduction, 8</td>
<td>8</td>
</tr>
<tr>
<td>1.12 Additional European Influence, 9</td>
<td>9</td>
</tr>
<tr>
<td>1.14 Certain Governmental Views, 11</td>
<td>11</td>
</tr>
<tr>
<td>1.14.1 Risk Reduction Program, 12</td>
<td>12</td>
</tr>
</tbody>
</table>
2 Risk Assessment Standards and Definitions

Bruce Hollcroft & Bruce K. Lyon

2.1 Objectives, 23
2.2 Introduction, 23
2.3 The Need for Risk Assessments, 24
2.4 Key Standards Requiring Risk Assessments, 24
2.5 OSHA Compliance and Risk Assessments, 24
 2.5.1 1910.132, Personal Protective Equipment Standard, 25
 2.5.2 1910.119, Process Safety Management Standard, 25
 2.5.3 Other OSHA Standards, 26
2.6 Consensus Standards Requiring Risk Assessment, 27
2.8 ISO 31000/ANSI/ASSE Z690 Risk Management Series, 28
2.9 ANSI/ASSE Z590.3-2011, Prevention through Design, 29
2.10 ANSI B11.0 Machine Safety, 30
2.11 NFPA 70E, 31
2.13 Key Terms and Definitions, 32
2.14 Summary, 46
 Review Questions, 47
 References, 47

3 Risk Assessment Fundamentals

Bruce Hollcroft & Bruce K. Lyon

3.1 Objectives, 49
3.2 Introduction, 49
3.3 Risk Assessment within the Risk Management Framework, 50
3.4 Risk Assessments and Operational Risk Management Systems, 51
3.5 The Purpose of Assessing Risk, 52
3.6 The Risk Assessment Process, 53
3.7 Selecting a Risk Assessment Matrix, 53
3.8 Establishing Context, 55
3.9 The Risk Assessment Team, 57
3.10 Hazard/Risk Identification, 58
CONTENTS

3.11 Risk Analysis, 59
 3.11.1 Consequence Analysis, 59
 3.11.2 Likelihood Analysis, 59
 3.11.3 Assessment of Controls, 60
3.12 Risk Evaluation, 60
3.13 Risk Treatment, 61
3.14 Communication, 61
3.15 Documentation, 62
3.16 Monitoring and Continuous Improvement, 63
3.17 Summary, 64
 Review Questions, 64
 References, 64

4 Defining Risk Assessment Criteria 67
 Bruce K. Lyon & Bruce Hollcroft
 4.1 Objectives, 67
 4.2 Introduction, 67
 4.3 Defining Risk Criteria, 68
 4.4 Risk Scoring Systems, 69
 4.5 Risk Assessment Matrices, 71
 4.6 Defining Risk Values, 71
 4.6.1 Qualitative Risk Models, 72
 4.6.2 Semiquantitative Risk Models, 72
 4.6.3 Quantitative Risk Models, 73
 4.7 Risk Factors, 74
 4.8 Risk Levels, 74
 4.9 Risk Scoring, 75
 4.10 Severity of Consequence, 76
 4.11 Likelihood of Occurrence, 77
 4.12 Exposure, 79
 4.13 Risk Reduction and the Hierarchy of Controls, 79
 4.13.1 Using a Protection Factor, 83
 4.14 Acceptable and Unacceptable Risk Levels, 84
 4.15 Documenting Risk, 85
 4.16 Communicating Risk Criteria, 88
 4.17 Summary, 88
 Review Questions, 88
 References, 89
 Appendix 4.A, 90

5 Fundamental Techniques 91
 Bruce K. Lyon
 5.1 Objectives, 91
 5.2 Introduction to Fundamental Hazard Analysis and Risk Assessment, 91
 5.3 Assessments Within an Operational Risk Management System, 93
 5.4 Hazard Analysis Versus Risk Assessment, 94
 5.5 The Hazard Analysis and Risk Assessment Process, 96
 5.6 Fundamental Methods, 99
8 Failure Mode and Effects Analysis

Georgi Popov & Bruce K. Lyon

8.1 Objectives, 163
8.2 Introduction, 163
8.3 Purpose and Use, 164
8.4 Defining Failure Modes, 166
8.5 Risk Description Considerations, 167
8.6 FMEA Process Steps, 172
8.7 Practical Application, 175
8.8 Summary, 176
Review Questions, 179
References, 179
Practical Example – Assignment #2 – FMEA, 179

9 Bow-Tie Risk Assessment Methodology

Georgi Popov & Bruce K. Lyon

9.1 Objectives, 181
9.2 Introduction, 181
9.3 History, 182
9.4 Overview, 182
9.5 Bow-Tie Methodology, 184
9.6 Practical Application, 186
9.6.1 Case Study #1: Spray Paint Operation, 186
9.6.2 Case Study #2: Bhopal Disaster, 193
9.7 Summary, 195
Review Questions, 195
References, 196
Appendix 9.A: QAP Corporation – Annual Report, 196

10 Design Safety Reviews

Bruce K. Lyon

10.1 Objectives, 209
10.2 Introduction, 209
10.3 Challenges and Obstacles to Overcome, 211
10.4 Standards Requiring Design Safety, 214
10.5 The Review of Designs, 215
10.6 Hazardous Energy Control, 216
10.7 Ergonomic Review of Designs, 217
10.8 Design Review Process, 218
10.9 Hazard Analysis and Risk Assessment in Design, 220
10.10 Conclusion, 224
Review Questions, 225
References, 225
11 Risk Assessment and the Prevention Through Design (PtD) Model 227

Georgi Popow, Bruce K. Lyon, & John N. Zey

11.1 Objectives, 227
11.2 Introduction, 227
11.3 The Concept of Prevention Through Design (PtD), 229
11.4 Risk Assessment Process and the PtD Model, 229
11.5 Case Study, 234
 11.5.1 Methods, 234
 11.5.2 Results, 234
 11.5.3 Occupational Size-Selective Criteria and Particles Size Sampling, 237
11.6 PtD and the Business Process, 243
11.7 Summary, 244
Review Questions, 244
References, 244

12 Industrial Hygiene Risk Assessment 247

Georgi Popow, Steven Hicks, & Tsvetan Popov

12.1 Objectives, 247
12.2 Introduction, 247
12.3 Fundamental Concepts, 248
12.4 Anticipating and Identifying Occupational Health Risks, 249
12.5 Determining Occupational Health Risks, 250
 12.5.1 Health Risk Rating Methodology, 250
 12.5.2 Exposure Rating Methodologies, 251
 12.5.3 Health Effect and Exposure Methodology, 251
 12.5.4 COSHH Essentials Tool, 251
 12.5.5 OSHA's Calculation for Mixtures, 254
 12.5.6 The ART Tool, 254
 12.5.7 Stoffenmanager, 254
12.6 Health Risk Assessments and Prioritization, 255
12.7 Modified HRR/IH FMEA Methodology, 256
 Sampling, 257
 Results, 257
12.8 Control Banding Nanotool, 261
12.9 Dermal Risk Assessment, 261
12.10 Occupational Health Risk and PtD Process Alignment, 262
12.11 Summary, 264
Review Questions, 265
References, 265

13 Machine Risk Assessments 267

Bruce K. Lyon

13.1 Objectives, 267
13.2 Introduction, 267
13.3 Machine Safety Standards, 268
13.4 Machine Hazards, 270
13.5 Machine Safeguarding, 271
 13.5.1 Machine Safety Control Systems, 273
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.6 Selecting Machines for Assessment</td>
<td>274</td>
</tr>
<tr>
<td>13.7 Risk Assessment of Machines</td>
<td>274</td>
</tr>
<tr>
<td>13.8 Estimating Risk</td>
<td>278</td>
</tr>
<tr>
<td>13.9 Case Study</td>
<td>279</td>
</tr>
<tr>
<td>13.10 Assessment of Machine Maintenance and Service</td>
<td>282</td>
</tr>
<tr>
<td>13.10.1 Risk Assessment Process</td>
<td>284</td>
</tr>
<tr>
<td>13.10.2 Risk Reduction Process</td>
<td>285</td>
</tr>
<tr>
<td>13.11 Summary</td>
<td>285</td>
</tr>
<tr>
<td>Review Questions</td>
<td>286</td>
</tr>
<tr>
<td>References</td>
<td>286</td>
</tr>
<tr>
<td>Appendix 13.A: Machine Safeguards Methods</td>
<td>287</td>
</tr>
<tr>
<td>14 Project-Oriented Risk Assessments</td>
<td>291</td>
</tr>
<tr>
<td>Bruce K. Lyon</td>
<td></td>
</tr>
<tr>
<td>14.1 Objectives</td>
<td>291</td>
</tr>
<tr>
<td>14.2 Introduction</td>
<td>291</td>
</tr>
<tr>
<td>14.3 Fatalities and Serious Incidents</td>
<td>293</td>
</tr>
<tr>
<td>14.4 Error Traps in Nonroutine Tasks</td>
<td>294</td>
</tr>
<tr>
<td>14.5 Management of Change</td>
<td>294</td>
</tr>
<tr>
<td>14.6 Construction Project Work</td>
<td>296</td>
</tr>
<tr>
<td>14.7 Construction Project Risk Assessment</td>
<td>297</td>
</tr>
<tr>
<td>14.8 Safe Work Methods</td>
<td>299</td>
</tr>
<tr>
<td>14.9 Pretask Hazard Analysis</td>
<td>301</td>
</tr>
<tr>
<td>14.10 The Use of Checklists</td>
<td>303</td>
</tr>
<tr>
<td>14.11 Maintenance and Service Work</td>
<td>304</td>
</tr>
<tr>
<td>14.12 Operating Hazard Analysis</td>
<td>305</td>
</tr>
<tr>
<td>14.13 Analyzing Specific Hazards</td>
<td>308</td>
</tr>
<tr>
<td>14.14 Pre-Entry Hazard Analysis</td>
<td>308</td>
</tr>
<tr>
<td>14.15 Fall Hazard Assessment</td>
<td>311</td>
</tr>
<tr>
<td>14.16 Summary</td>
<td>317</td>
</tr>
<tr>
<td>Review Questions</td>
<td>317</td>
</tr>
<tr>
<td>References</td>
<td>317</td>
</tr>
<tr>
<td>15 Food Processing Risk Assessments</td>
<td>319</td>
</tr>
<tr>
<td>Georgi Popov, Bruce K. Lyon, & Ying Zhen</td>
<td></td>
</tr>
<tr>
<td>15.1 Objectives</td>
<td>319</td>
</tr>
<tr>
<td>15.2 Overview</td>
<td>319</td>
</tr>
<tr>
<td>15.3 Introduction to Food Risk</td>
<td>320</td>
</tr>
<tr>
<td>15.4 Risk Assessment Techniques in the Food Industry</td>
<td>320</td>
</tr>
<tr>
<td>15.5 Food Safety-Related Hazards</td>
<td>321</td>
</tr>
<tr>
<td>15.5.1 Biological Food Hazards</td>
<td>321</td>
</tr>
<tr>
<td>15.5.2 Chemical Food Hazards</td>
<td>322</td>
</tr>
<tr>
<td>15.5.3 Physical Food Hazards</td>
<td>323</td>
</tr>
<tr>
<td>15.6 Techniques for Assessing Food Risk</td>
<td>323</td>
</tr>
<tr>
<td>15.7 Hazard Analysis and Critical Control Points</td>
<td>324</td>
</tr>
<tr>
<td>15.8 Integration of Risk Assessment Methods</td>
<td>325</td>
</tr>
<tr>
<td>15.9 PtD and HACCP Integration</td>
<td>338</td>
</tr>
<tr>
<td>15.10 Conclusions</td>
<td>339</td>
</tr>
</tbody>
</table>
16 Ergonomic Risk Assessment 343
Bruce K. Lyon & Georgi Popov

16.1 Objectives, 343
16.2 Introduction, 343
16.3 Ergonomics and Design, 344
16.4 Ergonomic Hazards, 345
16.5 Ergonomic Risk Factors, 346
16.6 Establishing an Ergonomics Assessment Process, 346
 16.6.1 Scope and Context, 348
 16.6.2 Goals and Objectives, 348
 16.6.3 Responsibilities, 348
 16.6.4 Training, 348
 16.6.5 Ergonomics Team, 348
16.7 Assessing Ergonomic Risk, 349
16.8 Ergonomics Improvement Process, 350
 16.8.1 Identify Jobs, 350
 16.8.2 Assessment Tools, 351
 16.8.3 Assessment Team, 352
 16.8.4 Performing the Assessments, 352
 16.8.5 Identifying Corrective Measures, 353
 16.8.6 Implementing Measures, 353
 16.8.7 Verify and Refine, 353
 16.8.8 Communicate Results, 354
16.9 ERAT: A Practical Assessment Tool, 354
 16.9.1 ERAT Example: Pork Processing Belly Grader, 356
16.10 Conclusion, 359
Review Questions, 360
References, 360

Appendix 16.A: Sample Ergonomic Responsibilities for Involved Stakeholders, 361
Appendix 16.B: Sample Ergonomics Training for Involved Stakeholders, 363
Appendix 16.E: Hierarchy of Ergonomic Risk Controls, 367

17 Assessing Operational Risks at an Organizational Level 369
Bruce K. Lyon

17.1 Objectives, 369
17.2 Introduction, 369
17.3 Risks to an Organization, 370
17.4 Organizational Risk Management, 371
17.5 Key Definitions in Organizational Risk, 372
18 Risk Assessment Applications in Lean Six Sigma and Environmental Management Systems

Georgi Popov

18.1 Objectives, 389
18.2 Introduction, 389
18.3 Environmental Management Systems (EMS), 390
18.4 ISO 14001 Implementation, 390
18.4.1 Environmental Policy and Planning, 392
18.4.2 Environmental Aspects, 393
18.4.3 Identify Environmental Aspects, 395
18.4.4 Identification Process, 395
18.4.5 Location, Department, Index, and Aspect, 396
18.4.6 Impacts to Environmental Properties, 397
18.4.7 Impact Subtotal and Polarity Adjustment, 397
18.4.8 Impact Severity, 398
18.4.9 Impact Probability, 398
18.4.10 Frequency, 400
18.4.11 Legal Risks, 400
18.4.12 Current Controls, 401
18.4.13 Significance Score for Significance Scores without Controls Section, 401
18.4.14 Personnel Risk, 401
18.4.15 Significance Scores with Controls Section, 403
18.4.16 Overall Significance Rating Chart, 403
18.5 EMS and Implementation of Lean Six Sigma Practices, 404
18.6 Conclusions, 407
Review Questions, 407
References, 408

19 Business Aspects of Operational Risk Assessment

Elyce Biddle

19.1 Objectives, 409
19.2 Introduction, 409
19.3 The Business Case Development Tool, 410
19.3.1 Steps of the Tool, 411
19.4 Business Case Examples, 412
19.4.1 Case Example One: Post Incident, 412
19.4.2 Case Example Two: Regulatory Requirement, 413
19.4.3 Case Example Three: Operational, 416
19.4.4 Case Example Four: Postoperational, 418
19.5 Conclusion, 424
Review Questions, 424
References, 424
20 Risk Assessment: Global Perspectives

Jim Whiting

20.1 Objectives, 427
20.2 Introduction, 427
20.3 Using ISO 31000 for Maturity Assurance and Conformity, 428
20.5 Global Comparison of Risk Tolerance Criteria, 432
 20.5.1 Individual Risk, 432
 20.5.2 Societal Risk, 433
20.6 Tolerability Criterion for Individual Risk, 433
20.7 Tolerability Criteria for Planning New Operations, 435
20.8 Investment to Prevent a Fatality, 436
20.9 Shifting the Paradigm from Absolute Safety to Risk Management, 438
 20.9.1 What Is Reasonably Practicable?, 438
20.10 Moving Toward Risk-Based Language for more Effective Risk Conversations, 440
20.11 A Cautionary Concluding Note, 440

Review Questions, 440
References, 441
Appendix 20.A: Better Terminology and Language for Risk-Based Conversations, 442

Index 445