Time Series and Panel Data Econometrics

M. HASHEM PESARAN

OXFORD UNIVERSITY PRESS
Contents

List of Figures xxi
List of Tables xxii

Part I Introduction to Econometrics

1 Relationship Between Two Variables 3
 1.1 Introduction 3
 1.2 The curve fitting approach 3
 1.3 The method of ordinary least squares 4
 1.4 Correlation coefficients between Y and X 5
 1.4.1 Pearson correlation coefficient 6
 1.4.2 Rank correlation coefficients 6
 1.4.3 Relationships between Pearson, Spearman, and Kendall correlation coefficients 8
 1.5 Decomposition of the variance of Y 8
 1.6 Linear statistical models 10
 1.7 Method of moments applied to bivariate regressions 12
 1.8 The likelihood approach for the bivariate regression model 13
 1.9 Properties of the OLS estimators 14
 1.9.1 Estimation of σ^2 18
 1.10 The prediction problem 19
 1.10.1 Prediction errors and their variance 20
 1.10.2 Ex ante predictions 21
 1.11 Exercises 22

2 Multiple Regression 24
 2.1 Introduction 24
 2.2 The classical normal linear regression model 24
 2.3 The method of ordinary least squares in multiple regression 27
 2.4 The maximum likelihood approach 28
 2.5 Properties of OLS residuals 30
 2.6 Covariance matrix of $\hat{\beta}$ 31
 2.7 The Gauss–Markov theorem 34
 2.8 Mean square error of an estimator and the bias-variance trade-off 36
 2.9 Distribution of the OLS estimator 37
 2.10 The multiple correlation coefficient 39
Content Overview

2.11 Partitioned regression 41
2.12 How to interpret multiple regression coefficients 43
2.13 Implications of misspecification for the OLS estimators 44
 2.13.1 The omitted variable problem 45
 2.13.2 The inclusion of irrelevant regressors 46
2.14 Linear regressions that are nonlinear in variables 47
2.15 Further reading 48
2.16 Exercises 48

3 Hypothesis Testing in Regression Models 51
 3.1 Introduction 51
 3.2 Statistical hypothesis and statistical testing 51
 3.2.1 Hypothesis testing 51
 3.2.2 Types of error and the size of the test 52
 3.3 Hypothesis testing in simple regression models 53
 3.4 Relationship between testing $\beta = 0$, and testing the significance of
dependence between Y and X 55
 3.5 Hypothesis testing in multiple regression models 58
 3.5.1 Confidence intervals 59
 3.6 Testing linear restrictions on regression coefficients 59
 3.7 Joint tests of linear restrictions 62
 3.8 Testing general linear restrictions 64
 3.8.1 Power of the F-test 65
 3.9 Relationship between the F-test and the coefficient of multiple correlation 65
 3.10 Joint confidence region 66
 3.11 The multicollinearity problem 67
 3.12 Multicollinearity and the prediction problem 72
 3.13 Implications of misspecification of the regression model on hypothesis testing 74
 3.14 Jarque–Bera’s test of the normality of regression residuals 75
 3.15 Predictive failure test 76
 3.16 A test of the stability of the regression coefficients: the Chow test 77
 3.17 Non-parametric estimation of the density function 77
 3.18 Further reading 79
 3.19 Exercises 79

4 Heteroskedasticity 83
 4.1 Introduction 83
 4.2 Regression models with heteroskedastic disturbances 83
 4.3 Efficient estimation of the regression coefficients in the presence of
 heteroskedasticity 86
 4.4 General models of heteroskedasticity 86
 4.5 Diagnostic checks and tests of homoskedasticity 89
 4.5.1 Graphical methods 89
 4.5.2 The Goldfeld–Quandt test 90
 4.5.3 Parametric tests of homoskedasticity 90
 4.6 Further reading 92
 4.7 Exercises 92
5 Autocorrelated Disturbances

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>94</td>
</tr>
<tr>
<td>5.2 Regression models with non-spherical disturbances</td>
<td>94</td>
</tr>
<tr>
<td>5.3 Consequences of residual serial correlation</td>
<td>95</td>
</tr>
<tr>
<td>5.4 Efficient estimation by generalized least squares</td>
<td>95</td>
</tr>
<tr>
<td>5.4.1 Feasible generalized least squares</td>
<td>97</td>
</tr>
<tr>
<td>5.5 Regression model with autocorrelated disturbances</td>
<td>98</td>
</tr>
<tr>
<td>5.5.1 Estimation</td>
<td>99</td>
</tr>
<tr>
<td>5.5.2 Higher-order error processes</td>
<td>100</td>
</tr>
<tr>
<td>5.5.3 The AR(1) case</td>
<td>102</td>
</tr>
<tr>
<td>5.5.4 The AR(2) case</td>
<td>102</td>
</tr>
<tr>
<td>5.5.5 Covariance matrix of the exact ML estimators for the AR(1) and AR(2) disturbances</td>
<td>103</td>
</tr>
<tr>
<td>5.5.6 Adjusted residuals, R^2, R^2, and other statistics</td>
<td>103</td>
</tr>
<tr>
<td>5.5.7 Log-likelihood ratio statistics for tests of residual serial correlation</td>
<td>105</td>
</tr>
<tr>
<td>5.6 Cochrane–Orcutt iterative method</td>
<td>106</td>
</tr>
<tr>
<td>5.6.1 Covariance matrix of the C-O estimators</td>
<td>107</td>
</tr>
<tr>
<td>5.7 ML/AR estimators by the Gauss–Newton method</td>
<td>110</td>
</tr>
<tr>
<td>5.7.1 AR(p) error process with zero restrictions</td>
<td>111</td>
</tr>
<tr>
<td>5.8 Testing for serial correlation</td>
<td>111</td>
</tr>
<tr>
<td>5.8.1 Lagrange multiplier test of residual serial correlation</td>
<td>112</td>
</tr>
<tr>
<td>5.9 Newey–West robust variance estimator</td>
<td>113</td>
</tr>
<tr>
<td>5.10 Robust hypothesis testing in models with serially correlated/heteroskedastic errors</td>
<td>115</td>
</tr>
<tr>
<td>5.11 Further reading</td>
<td>118</td>
</tr>
<tr>
<td>5.12 Exercises</td>
<td>118</td>
</tr>
</tbody>
</table>

6 Introduction to Dynamic Economic Modelling

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>120</td>
</tr>
<tr>
<td>6.2 Distributed lag models</td>
<td>120</td>
</tr>
<tr>
<td>6.2.1 Estimation of ARDL models</td>
<td>122</td>
</tr>
<tr>
<td>6.3 Partial adjustment model</td>
<td>123</td>
</tr>
<tr>
<td>6.4 Error-correction models</td>
<td>124</td>
</tr>
<tr>
<td>6.5 Long-run and short-run effects</td>
<td>125</td>
</tr>
<tr>
<td>6.6 Concept of mean lag and its calculation</td>
<td>127</td>
</tr>
<tr>
<td>6.7 Models of adaptive expectations</td>
<td>128</td>
</tr>
<tr>
<td>6.8 Rational expectations models</td>
<td>129</td>
</tr>
<tr>
<td>6.8.1 Models containing expectations of exogenous variables</td>
<td>130</td>
</tr>
<tr>
<td>6.8.2 RE models with current expectations of endogenous variable</td>
<td>130</td>
</tr>
<tr>
<td>6.8.3 RE models with future expectations of the endogenous variable</td>
<td>131</td>
</tr>
<tr>
<td>6.9 Further reading</td>
<td>133</td>
</tr>
<tr>
<td>6.10 Exercises</td>
<td>134</td>
</tr>
</tbody>
</table>

7 Predictability of Asset Returns and the Efficient Market Hypothesis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>136</td>
</tr>
<tr>
<td>7.2 Prices and returns</td>
<td>136</td>
</tr>
<tr>
<td>7.2.1 Single period returns</td>
<td>137</td>
</tr>
<tr>
<td>7.2.2 Multi-period returns</td>
<td>138</td>
</tr>
</tbody>
</table>
Contents

7.2.3 Overlapping returns
7.3 Statistical models of returns
7.3.1 Percentiles, critical values, and Value at Risk
7.3.2 Measures of departure from normality
7.4 Empirical evidence: statistical properties of returns
7.4.1 Other stylized facts about asset returns
7.4.2 Monthly stock market returns
7.5 Stock return regressions
7.6 Market efficiency and stock market predictability
7.6.1 Risk-neutral investors
7.6.2 Risk-averse investors
7.7 Return predictability and alternative versions of the efficient market hypothesis
7.7.1 Dynamic stochastic equilibrium formulations and the joint hypothesis problem
7.7.2 Information and processing costs and the EMH
7.8 Theoretical foundations of the EMH
7.9 Exploiting profitable opportunities in practice
7.10 New research directions and further reading
7.11 Exercises

Part II Statistical Theory

8 Asymptotic Theory
8.1 Introduction
8.2 Concepts of convergence of random variables
8.2.1 Convergence in probability
8.2.2 Convergence with probability 1
8.2.3 Convergence in s-th mean
8.3 Relationships among modes of convergence
8.4 Convergence in distribution
8.4.1 Slutsky's convergence theorems
8.5 Stochastic orders $O_p(\cdot)$ and $o_p(\cdot)$
8.6 The law of large numbers
8.7 Central limit theorems
8.8 The case of dependent and heterogeneously distributed observations
8.8.1 Law of large numbers
8.8.2 Central limit theorems
8.9 Transformation of asymptotically normal statistics
8.10 Further reading
8.11 Exercises

9 Maximum Likelihood Estimation
9.1 Introduction
9.2 The likelihood function
9.3 Weak and strict exogeneity
9.4 Regularity conditions and some preliminary results
9.5 Asymptotic properties of ML estimators
9.6 ML estimation for heterogeneous and the dependent observations

9.6.1 The log-likelihood function for dependent observations 209
9.6.2 Asymptotic properties of ML estimators 210

9.7 Likelihood-based tests

9.7.1 The likelihood ratio test procedure 213
9.7.2 The Lagrange multiplier test procedure 213
9.7.3 The Wald test procedure 214

9.8 Further reading 222

9.9 Exercises 222

10 Generalized Method of Moments

10.1 Introduction 225
10.2 Population moment conditions 226
10.3 Exactly \(q \) moment conditions 228
10.4 Excess of moment conditions 229
 10.4.1 Consistency 230
 10.4.2 Asymptotic normality 230
10.5 Optimal weighting matrix 232
10.6 Two-step and iterated GMM estimators 233
10.7 Misspecification test 234
10.8 The generalized instrumental variable estimator 235
 10.8.1 Two-stage least squares 238
 10.8.2 Generalized \(R^2 \) for IV regressions 239
 10.8.3 Sargan's general misspecification test 239
 10.8.4 Sargan's test of residual serial correlation for IV regressions 240
10.9 Further reading 241
10.10 Exercises 241

11 Model Selection and Testing Non-Nested Hypotheses

11.1 Introduction 242
11.2 Formulation of econometric models 243
11.3 Pseudo-true values
 11.3.1 Rival linear regression models 245
 11.3.2 Probit versus logit models 246
11.4 Model selection versus hypothesis testing 247
11.5 Criteria for model selection 249
 11.5.1 Akaike information criterion (AIC) 249
 11.5.2 Schwarz Bayesian criterion (SBC) 249
 11.5.3 Hannan–Quinn criterion (HQC) 250
 11.5.4 Consistency properties of the different model selection criteria 250
11.6 Non-nested tests for linear regression models 250
 11.6.1 The N-test 251
 11.6.2 The NT-test 251
 11.6.3 The W-test 252
 11.6.4 The J-test 252
 11.6.5 The JA-test 252
 11.6.6 The Encompassing test 253
14.4.2 Maximum likelihood estimation of AR(1) processes 309
14.4.3 Maximum likelihood estimation of AR(p) processes 312
14.5 Small sample bias-corrected estimators of ϕ 313
14.6 Inconsistency of the OLS estimator of dynamic models with serially correlated errors 315
14.7 Estimation of mixed ARMA processes 317
14.8 Asymptotic distribution of the ML estimator 318
14.9 Estimation of the spectral density 318
14.10 Exercises 321

15 Unit Root Processes 324
15.1 Introduction 324
15.2 Difference stationary processes 324
15.3 Unit root and other related processes 326
 15.3.1 Martingale process 326
 15.3.2 Martingale difference process 327
 15.3.3 L_p-mixingales 328
15.4 Trend-stationary versus first difference stationary processes 328
15.5 Variance ratio test 329
15.6 Dickey–Fuller unit root tests 332
 15.6.1 Dickey–Fuller test for models without a drift 332
 15.6.2 Dickey–Fuller test for models with a drift 334
 15.6.3 Asymptotic distribution of the Dickey–Fuller statistic 335
 15.6.4 Limiting distribution of the Dickey–Fuller statistic 338
 15.6.5 Augmented Dickey–Fuller test 338
 15.6.6 Computation of critical values of the DF statistics 339
15.7 Other unit root tests 339
 15.7.1 Phillips–Perron test 339
 15.7.2 ADF–GLS unit root test 341
 15.7.3 The weighted symmetric tests of unit root 342
 15.7.4 Max ADF unit root test 345
 15.7.5 Testing for stationarity 345
15.8 Long memory processes 346
 15.8.1 Spectral density of long memory processes 348
 15.8.2 Fractionally integrated processes 348
 15.8.3 Cross-sectional aggregation and long memory processes 349
15.9 Further reading 350
15.10 Exercises 351

16 Trend and Cycle Decomposition 358
16.1 Introduction 358
16.2 The Hodrick–Prescott filter 358
16.3 Band-pass filter 360
16.4 The structural time series approach 360
16.5 State space models and the Kalman filter 361
16.6 Trend-cycle decomposition of unit root processes 364
 16.6.1 Beveridge–Nelson decomposition 364
16.6.2 Watson decomposition
16.6.3 Stochastic trend representation
16.7 Further reading
16.8 Exercises

17 Introduction to Forecasting
17.1 Introduction
17.2 Losses associated with point forecasts and forecast optimality
 17.2.1 Quadratic loss function
 17.2.2 Asymmetric loss function
17.3 Probability event forecasts
 17.3.1 Estimation of probability forecast densities
17.4 Conditional and unconditional forecasts
17.5 Multi-step ahead forecasting
17.6 Forecasting with ARMA models
 17.6.1 Forecasting with AR processes
 17.6.2 Forecasting with MA processes
17.7 Iterated and direct multi-step AR methods
17.8 Combining forecasts
17.9 Sources of forecast uncertainty
17.10 A decision-based forecast evaluation framework
 17.10.1 Quadratic cost functions and the MSFE criteria
 17.10.2 Negative exponential utility: a finance application
17.11 Test statistics of forecast accuracy based on loss differential
17.12 Directional forecast evaluation criteria
 17.12.1 Pesaran–Timmermann test of market timing
 17.12.2 Relationship of the PT statistic to the Kuipers score
 17.12.3 A regression approach to the derivation of the PT test
 17.12.4 A generalized PT test for serially dependent outcomes
17.13 Tests of predictability for multi-category variables
 17.13.1 The case of serial dependence in outcomes
17.14 Evaluation of density forecasts
17.15 Further reading
17.16 Exercises

18 Measurement and Modelling of Volatility
18.1 Introduction
18.2 Realized volatility
18.3 Models of conditional variance
 18.3.1 RiskMetrics™ (JP Morgan) method
18.4 Econometric approaches
 18.4.1 ARCH(1) and GARCH(1,1) specifications
 18.4.2 Higher-order GARCH models
 18.4.3 Exponential GARCH-in-mean model
 18.4.4 Absolute GARCH-in-mean model
18.5 Testing for ARCH/GARCH effects
 18.5.1 Testing for GARCH effects
18.6 Stochastic volatility models 419
18.7 Risk-return relationships 419
18.8 Parameter variations and ARCH effects 420
18.9 Estimation of ARCH and ARCH-in-mean models 420
 18.9.1 ML estimation with Gaussian errors 421
 18.9.2 ML estimation with Student's t-distributed errors 421
18.10 Forecasting with GARCH models 423
 18.10.1 Point and interval forecasts 423
 18.10.2 Probability forecasts 424
 18.10.3 Forecasting volatility 424
18.11 Further reading 425
18.12 Exercises 426

Part V Multivariate Time Series Models 429

19 Multivariate Analysis 431
 19.1 Introduction 431
 19.2 Seemingly unrelated regression equations 431
 19.2.1 Generalized least squares estimator 432
 19.2.2 System estimation subject to linear restrictions 434
 19.2.3 Maximum likelihood estimation of SURE models 436
 19.2.4 Testing linear/nonlinear restrictions 438
 19.2.5 LR statistic for testing whether Σ is diagonal 439
 19.3 System of equations with endogenous variables 441
 19.3.1 Two- and three-stage least squares 442
 19.3.2 Iterated instrumental variables estimator 444
 19.4 Principal components 446
 19.5 Common factor models 448
 19.5.1 PC and cross-section average estimators of factors 450
 19.5.2 Determining the number of factors in a large m and large T framework 454
 19.6 Canonical correlation analysis 458
 19.7 Reduced rank regression 461
 19.8 Further reading 464
 19.9 Exercises 464

20 Multivariate Rational Expectations Models 467
 20.1 Introduction 467
 20.2 Rational expectations models with future expectations 467
 20.2.1 Forward solution 468
 20.2.2 Method of undetermined coefficients 470
 20.3 Rational expectations models with forward and backward components 472
 20.3.1 Quadratic determinantal equation method 473
 20.4 Rational expectations models with feedbacks 476
 20.5 The higher-order case 479
 20.5.1 Retrieving the solution for y_t 481
 20.6 A 'finite-horizon' RE model 482
 20.6.1 A backward recursive solution 482
20.7 Other solution methods
 20.7.1 Blanchard and Kahn method
 20.7.2 King and Watson method
 20.7.3 Sims method
 20.7.4 Martingale difference method
20.8 Rational expectations DSGE models
 20.8.1 A general framework
 20.8.2 DSGE models without lags
 20.8.3 DSGE models with lags
20.9 Identification of RE models: a general treatment
 20.9.1 Calibration and identification
20.10 Maximum likelihood estimation of RE models
20.11 GMM estimation of RE models
20.12 Bayesian analysis of RE models
20.13 Concluding remarks
20.14 Further reading
20.15 Exercises

21 Vector Autoregressive Models
 21.1 Introduction
 21.2 Vector autoregressive models
 21.2.1 Companion form of the VAR(p) model
 21.2.2 Stationary conditions for VAR(p)
 21.2.3 Unit root case
 21.3 Estimation
 21.4 Deterministic components
 21.5 VAR order selection
 21.6 Granger causality
 21.6.1 Testing for block Granger non-causality
 21.7 Forecasting with multivariate models
 21.8 Multivariate spectral density
 21.9 Further reading
 21.10 Exercises

22 Cointegration Analysis
 22.1 Introduction
 22.2 Cointegration
 22.3 Testing for cointegration: single equation approaches
 22.3.1 Bounds testing approaches to the analysis of long-run relationships
 22.3.2 Phillips–Hansen fully modified OLS estimator
 22.4 Cointegrating VAR: multiple cointegrating relations
 22.5 Identification of long-run effects
 22.6 System estimation of cointegrating relations
 22.7 Higher-order lags
 22.8 Treatment of trends in cointegrating VAR models
 22.9 Specification of the deterministics: five cases
 22.10 Testing for cointegration in VAR models
22.10.1 Maximum eigenvalue statistic
22.10.2 Trace statistic
22.10.3 The asymptotic distribution of the trace statistic

22.11 Long-run structural modelling
22.11.1 Identification of the cointegrating relations
22.11.2 Estimation of the cointegrating relations under general linear restrictions
22.11.3 Log-likelihood ratio statistics for tests of over-identifying restrictions on the cointegrating relations

22.12 Small sample properties of test statistics
22.12.1 Parametric approach
22.12.2 Non-parametric approach

22.13 Estimation of the short-run parameters of the VEC model
22.14 Analysis of stability of the cointegrated system
22.15 Beveridge–Nelson decomposition in VARs

22.16 The trend-cycle decomposition of interest rates

22.17 Further reading

22.18 Exercises

23 VARX Modelling

23.1 Introduction
23.2 VAR models with weakly exogenous I(1) variables
 23.2.1 Higher-order lags
23.3 Efficient estimation
 23.3.1 The five cases
23.4 Testing weak exogeneity
23.5 Testing for cointegration in VARX models
 23.5.1 Testing \(H_r \) against \(H_{r+1} \)
 23.5.2 Testing \(H_r \) against \(H_{my} \)
 23.5.3 Testing \(H_r \) in the presence of I(0) weakly exogenous regressors
23.6 Identifying long-run relationships in a cointegrating VARX
23.7 Forecasting using VARX models
23.8 An empirical application: a long-run structural model for the UK
 23.8.1 Estimation and testing of the model
23.9 Further Reading

23.10 Exercises

24 Impulse Response Analysis

24.1 Introduction
24.2 Impulse response analysis
24.3 Traditional impulse response functions
 24.3.1 Multivariate systems
24.4 Orthogonalized impulse response function
 24.4.1 A simple example
24.5 Generalized impulse response function (GIRF)
24.6 Identification of a single structural shock in a structural model
24.7 Forecast error variance decompositions
 24.7.1 Orthogonalized forecast error variance decomposition
 24.7.2 Generalized forecast error variance decomposition
24.8 Impulse response analysis in VARX models
- 24.8.1 Impulse response analysis in cointegrating VARs
- 24.8.2 Persistence profiles for cointegrating relations

24.9 Empirical distribution of impulse response functions and persistence profiles

24.10 Identification of short-run effects in structural VAR models

24.11 Structural systems with permanent and transitory shocks
- 24.11.1 Structural VARs (SVAR)
- 24.11.2 Permanent and transitory structural shocks

24.12 Some applications
- 24.12.1 Blanchard and Quah (1989) model
- 24.12.2 Gali's IS-LM model

24.13 Identification of monetary policy shocks

24.14 Further reading

24.15 Exercises

25 Modelling the Conditional Correlation of Asset Returns

25.1 Introduction

25.2 Exponentially weighted covariance estimation
- 25.2.1 One parameter exponential-weighted moving average
- 25.2.2 Two parameters exponential-weighted moving average
- 25.2.3 Mixed moving average ($\text{MMA}(n,v)$)
- 25.2.4 Generalized exponential-weighted moving average ($\text{EWMA}(n,p,q,v)$)

25.3 Dynamic conditional correlations model

25.4 Initialization, estimation, and evaluation samples

25.5 Maximum likelihood estimation of DCC model
- 25.5.1 ML estimation with Gaussian returns
- 25.5.2 ML estimation with Student's t-distributed returns

25.6 Simple diagnostic tests of the DCC model

25.7 Forecasting volatilities and conditional correlations

25.8 An application: volatilities and conditional correlations in weekly returns
- 25.8.1 Devolatilized returns and their properties
- 25.8.2 ML estimation
- 25.8.3 Asset-specific estimates
- 25.8.4 Post estimation evaluation of the t-DCC model
- 25.8.5 Recursive estimates and the VaR diagnostics
- 25.8.6 Changing volatilities and correlations

25.9 Further reading

25.10 Exercises

Part VI Panel Data Econometrics

26 Panel Data Models with Strictly Exogenous Regressors
- 26.1 Introduction
- 26.2 Linear panels with strictly exogenous regressors
- 26.3 Pooled OLS estimator
- 26.4 Fixed-effects specification
 - 26.4.1 The relationship between FE and least squares dummy variable estimators
 - 26.4.2 Derivation of the FE estimator as a maximum likelihood estimator
26.5 Random effects specification
 26.5.1 GLS estimator
 26.5.2 Maximum likelihood estimation of the random effects model
26.6 Cross-sectional Regression: the between-group estimator of β
 26.6.1 Relation between pooled OLS and RE estimators
 26.6.2 Relation between FE, RE, and between (cross-sectional) estimators
 26.6.3 Fixed-effects versus random effects
26.7 Estimation of the variance of pooled OLS, FE, and RE estimators of β robust
to heteroskedasticity and serial correlation
26.8 Models with time-specific effects
26.9 Testing for fixed-effects
 26.9.1 Hausman's misspecification test
26.10 Estimation of time-invariant effects
 26.10.1 Case 1: z_t is uncorrelated with η_i
 26.10.2 Case 2: z_t is correlated with η_i
26.11 Nonlinear unobserved effects panel data models
26.12 Unbalanced panels
26.13 Further reading
26.14 Exercises

27 Short T Dynamic Panel Data Models
 27.1 Introduction
 27.2 Dynamic panels with short T and large N
 27.3 Bias of the FE and RE estimators
 27.4 Instrumental variables and generalized method of moments
 27.4.1 Anderson and Hsiao
 27.4.2 Arellano and Bond
 27.4.3 Ahn and Schmidt
 27.4.4 Arellano and Bover: Models with time-invariant regressors
 27.4.5 Blundell and Bond
 27.4.6 Testing for overidentifying restrictions
 27.5 Keane and Runkle method
 27.6 Transformed likelihood approach
 27.7 Short dynamic panels with unobserved factor error structure
 27.8 Dynamic, nonlinear unobserved effects panel data models
 27.9 Further reading
 27.10 Exercises

28 Large Heterogeneous Panel Data Models
 28.1 Introduction
 28.2 Heterogeneous panels with strictly exogenous regressors
 28.3 Properties of pooled estimators in heterogeneous panels
 28.4 The Swamy estimator
 28.5 The mean group estimator (MGE)
 28.5.1 Relationship between Swamy's and MGE estimators
 28.6 Dynamic heterogeneous panels
 28.7 Large sample bias of pooled estimators in dynamic heterogeneous models
28.8 Mean group estimator of dynamic heterogeneous panels
 28.8.1 Small sample bias
28.9 Bayesian approach
28.10 Pooled mean group estimator
28.11 Testing for slope homogeneity
 28.11.1 Standard F-test
 28.11.2 Hausman-type test by panels
 28.11.3 G-test of Phillips and Sul
 28.11.4 Swamy's test
 28.11.5 Pesaran and Yamagata Δ-test
 28.11.6 Extensions of the Δ-tests
 28.11.7 Bias-corrected bootstrap tests of slope homogeneity for the AR(1) model
 28.11.8 Application: testing slope homogeneity in earnings dynamics
28.12 Further reading
28.13 Exercises

29 Cross-Sectional Dependence in Panels
 29.1 Introduction
 29.2 Weak and strong cross-sectional dependence in large panels
 29.3 Common factor models
 29.4 Large heterogeneous panels with a multifactor error structure
 29.4.1 Principal components estimators
 29.4.2 Common correlated effects estimator
 29.5 Dynamic panel data models with a factor error structure
 29.5.1 Quasi-maximum likelihood estimator
 29.5.2 PC estimators for dynamic panels
 29.5.3 Dynamic CCE estimators
 29.5.4 Properties of CCE in the case of panels with weakly exogenous regressors
 29.6 Estimating long-run coefficients in dynamic panel data models with a factor error structure
 29.7 Testing for error cross-sectional dependence
 29.8 Application of CCE estimators and CD tests to unbalanced panels
 29.9 Further reading
 29.10 Exercises

30 Spatial Panel Econometrics
 30.1 Introduction
 30.2 Spatial weights and the spatial lag operator
 30.3 Spatial dependence in panels
 30.3.1 Spatial lag models
 30.3.2 Spatial error models
 30.3.3 Weak cross-sectional dependence in spatial panels
 30.4 Estimation
 30.4.1 Maximum likelihood estimator
 30.4.2 Fixed-effects specification
 30.4.3 Random effects specification
 30.4.4 Instrumental variables and GMM
30.5 Dynamic panels with spatial dependence 810
30.6 Heterogeneous panels 810
 30.6.1 Temporal heterogeneity 812
30.7 Non-parametric approaches 813
30.8 Testing for spatial dependence 814
30.9 Further reading 815
30.10 Exercises 815

31 Unit Roots and Cointegration in Panels 817
 31.1 Introduction 817
 31.2 Model and hypotheses to test 818
 31.3 First generation panel unit root tests 821
 31.3.1 Distribution of tests under the null hypothesis 822
 31.3.2 Asymptotic power of tests 825
 31.3.3 Heterogeneous trends 826
 31.3.4 Short-run dynamics 828
 31.3.5 Other approaches to panel unit root testing 830
 31.3.6 Measuring the proportion of cross-units with unit roots 832
 31.4 Second generation panel unit root tests 833
 31.4.1 Cross-sectional dependence 833
 31.4.2 Tests based on GLS regressions 834
 31.4.3 Tests based on OLS regressions 835
 31.5 Cross-unit cointegration 836
 31.6 Finite sample properties of panel unit root tests 838
 31.7 Panel cointegration: general considerations 839
 31.8 Residual-based approaches to panel cointegration 843
 31.8.1 Spurious regression 843
 31.8.2 Tests of panel cointegration 848
 31.9 Tests for multiple cointegration 849
 31.10 Estimation of cointegrating relations in panels 850
 31.10.1 Single equation estimators 850
 31.10.2 System estimators 852
 31.11 Panel cointegration in the presence of cross-sectional dependence 853
 31.12 Further reading 855
 31.13 Exercises 855

32 Aggregation of Large Panels 859
 32.1 Introduction 859
 32.2 Aggregation problems in the literature 860
 32.3 A general framework for micro (disaggregate) behavioural relationships 863
 32.4 Alternative notions of aggregate functions 864
 32.4.1 Deterministic aggregation 864
 32.4.2 A statistical approach to aggregation 864
 32.4.3 A forecasting approach to aggregation 865
 32.5 Large cross-sectional aggregation of ARDL models 867
 32.6 Aggregation of factor-augmented VAR models 872
 32.6.1 Aggregation of stationary micro relations with random coefficients 874
 32.6.2 Limiting behaviour of the optimal aggregate function 875
32.7 Relationship between micro and macro parameters 877
32.8 Impulse responses of macro and aggregated idiosyncratic shocks 878
32.9 A Monte Carlo investigation 881
 32.9.1 Monte Carlo design 882
 32.9.2 Estimation of $g(x)$ using aggregate and disaggregate data 883
 32.9.3 Monte Carlo results 884
32.10 Application I: aggregation of life-cycle consumption decision rules under habit formation 887
32.11 Application II: inflation persistence 892
 32.11.1 Data 893
 32.11.2 Micro model of consumer prices 893
 32.11.3 Estimation results 894
 32.11.4 Sources of aggregate inflation persistence 895
32.12 Further reading 896
32.13 Exercises 897

33 Theory and Practice of GVAR Modelling 900
 33.1 Introduction 900
 33.2 Large-scale VAR reduced form representation of data 901
 33.3 The GVAR solution to the curse of dimensionality 903
 33.3.1 Case of rank deficient G_0 906
 33.3.2 Introducing common variables 907
 33.4 Theoretical justification of the GVAR approach 909
 33.4.1 Approximating a global factor model 909
 33.4.2 Approximating factor-augmented stationary high dimensional VARs 911
 33.5 Conducting impulse response analysis with GVARs 914
 33.6 Forecasting with GVARs 917
 33.7 Long-run properties of GVARs 921
 33.7.1 Analysis of the long run 921
 33.7.2 Permanent/transitory component decomposition 922
 33.8 Specification tests 923
 33.9 Empirical applications of the GVAR approach 923
 33.9.1 Forecasting applications 924
 33.9.2 Global finance applications 925
 33.9.3 Global macroeconomic applications 927
 33.9.4 Sectoral and other applications 932
 33.10 Further reading 932
 33.11 Exercises 933

Appendices 937

Appendix A: Mathematics 939
 A.1 Complex numbers and trigonometry 939
 A.1.1 Complex numbers 939
 A.1.2 Trigonometric functions 940
 A.1.3 Fourier analysis 941
 A.2 Matrices and matrix operations 942
Contents

B.10 Useful probability distributions
 B.10.1 Discrete probability distributions 973
 B.10.2 Continuous distributions 974
 B.10.3 Multivariate distributions 977
B.11 Cochran's theorem and related results 979
B.12 Some useful inequalities
 B.12.1 Chebyshev's inequality 980
 B.12.2 Cauchy-Schwarz's inequality 981
 B.12.3 Holder's inequality 982
 B.12.4 Jensen's inequality 982
B.13 Brownian motion
 B.13.1 Probability limits involving unit root processes 984

Appendix C: Bayesian Analysis

C.1 Introduction 985
C.2 Bayes theorem
 C.2.1 Prior and posterior distributions 985
C.3 Bayesian inference
 C.3.1 Identification 987
 C.3.2 Choice of the priors 987
C.4 Posterior predictive distribution 988
C.5 Bayesian model selection 989
C.6 Bayesian analysis of the classical normal linear regression model 990
C.7 Bayesian shrinkage (ridge) estimator 992

References 995
Name Index 1035
Subject Index 1042