Quantitative Risk Management
Concepts, Techniques and Tools
Revised Edition

Alexander J. McNeil
Rüdiger Frey
Paul Embrechts

Princeton University Press
Princeton and Oxford
Contents

Preface xv

I An Introduction to Quantitative Risk Management 1

1 Risk in Perspective 3

1.1 Risk 3

1.1.1 Risk and Randomness 3

1.1.2 Financial Risk 5

1.1.3 Measurement and Management 6

1.2 A Brief History of Risk Management 8

1.2.1 From Babylon to Wall Street 8

1.2.2 The Road to Regulation 15

1.3 The Regulatory Framework 20

1.3.1 The Basel Framework 20

1.3.2 The Solvency II Framework 25

1.3.3 Criticism of Regulatory Frameworks 28

1.4 Why Manage Financial Risk? 30

1.4.1 A Societal View 30

1.4.2 The Shareholder's View 32

1.5 Quantitative Risk Management 34

1.5.1 The Q in QRM 34

1.5.2 The Nature of the Challenge 35

1.5.3 QRM Beyond Finance 38

2 Basic Concepts in Risk Management 42

2.1 Risk Management for a Financial Firm 42

2.1.1 Assets, Liabilities and the Balance Sheet 42

2.1.2 Risks Faced by a Financial Firm 44

2.1.3 Capital 45

2.2 Modelling Value and Value Change 47

2.2.1 Mapping Risks 47

2.2.2 Valuation Methods 54

2.2.3 Loss Distributions 58

2.3 Risk Measurement 61

2.3.1 Approaches to Risk Measurement 61

2.3.2 Value-at-Risk 64

2.3.3 VaR in Risk Capital Calculations 67
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.4</td>
<td>Other Risk Measures Based on Loss Distributions</td>
<td>69</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Coherent and Convex Risk Measures</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>Empirical Properties of Financial Data</td>
<td>79</td>
</tr>
<tr>
<td>3.1</td>
<td>Stylized Facts of Financial Return Series</td>
<td>79</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Volatility Clustering</td>
<td>80</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Non-normality and Heavy Tails</td>
<td>85</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Longer-Interval Return Series</td>
<td>87</td>
</tr>
<tr>
<td>3.2</td>
<td>Multivariate Stylized Facts</td>
<td>88</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Correlation between Series</td>
<td>88</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Tail Dependence</td>
<td>90</td>
</tr>
<tr>
<td>II</td>
<td>Methodology</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>Financial Time Series</td>
<td>97</td>
</tr>
<tr>
<td>4.1</td>
<td>Fundamentals of Time Series Analysis</td>
<td>98</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Basic Definitions</td>
<td>98</td>
</tr>
<tr>
<td>4.1.2</td>
<td>ARMA Processes</td>
<td>100</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Analysis in the Time Domain</td>
<td>105</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Statistical Analysis of Time Series</td>
<td>107</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Prediction</td>
<td>109</td>
</tr>
<tr>
<td>4.2</td>
<td>GARCH Models for Changing Volatility</td>
<td>112</td>
</tr>
<tr>
<td>4.2.1</td>
<td>ARCH Processes</td>
<td>112</td>
</tr>
<tr>
<td>4.2.2</td>
<td>GARCH Processes</td>
<td>118</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Simple Extensions of the GARCH Model</td>
<td>121</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Fitting GARCH Models to Data</td>
<td>123</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Volatility Forecasting and Risk Measure Estimation</td>
<td>129</td>
</tr>
<tr>
<td>5</td>
<td>Extreme Value Theory</td>
<td>135</td>
</tr>
<tr>
<td>5.1</td>
<td>Maxima</td>
<td>135</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Generalized Extreme Value Distribution</td>
<td>136</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Maximum Domains of Attraction</td>
<td>139</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Maxima of Strictly Stationary Time Series</td>
<td>141</td>
</tr>
<tr>
<td>5.1.4</td>
<td>The Block Maxima Method</td>
<td>142</td>
</tr>
<tr>
<td>5.2</td>
<td>Threshold Exceedances</td>
<td>146</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Generalized Pareto Distribution</td>
<td>147</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Modelling Excess Losses</td>
<td>149</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Modelling Tails and Measures of Tail Risk</td>
<td>154</td>
</tr>
<tr>
<td>5.2.4</td>
<td>The Hill Method</td>
<td>157</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Simulation Study of EVT Quantile Estimators</td>
<td>161</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Conditional EVT for Financial Time Series</td>
<td>162</td>
</tr>
<tr>
<td>5.3</td>
<td>Point Process Models</td>
<td>164</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Threshold Exceedances for Strict White Noise</td>
<td>164</td>
</tr>
<tr>
<td>5.3.2</td>
<td>The POT Model</td>
<td>166</td>
</tr>
<tr>
<td>6</td>
<td>Multivariate Models</td>
<td>173</td>
</tr>
<tr>
<td>6.1</td>
<td>Basics of Multivariate Modelling</td>
<td>174</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Random Vectors and Their Distributions</td>
<td>174</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Standard Estimators of Covariance and Correlation</td>
<td>176</td>
</tr>
<tr>
<td>6.1.3</td>
<td>The Multivariate Normal Distribution</td>
<td>178</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Testing Multivariate Normality</td>
<td>180</td>
</tr>
</tbody>
</table>
Contents

6.2 Normal Mixture Distributions 183
6.2.1 Normal Variance Mixtures 183
6.2.2 Normal Mean–Variance Mixtures 187
6.2.3 Generalized Hyperbolic Distributions 188
6.2.4 Empirical Examples 191

6.3 Spherical and Elliptical Distributions 196
6.3.1 Spherical Distributions 196
6.3.2 Elliptical Distributions 200
6.3.3 Properties of Elliptical Distributions 202
6.3.4 Estimating Dispersion and Correlation 203

6.4 Dimension-Reduction Techniques 206
6.4.1 Factor Models 206
6.4.2 Statistical Estimation Strategies 208
6.4.3 Estimating Macroeconomic Factor Models 210
6.4.4 Estimating Fundamental Factor Models 213
6.4.5 Principal Component Analysis 214

7 Copulas and Dependence 220
7.1 Copulas 220
7.1.1 Basic Properties 221
7.1.2 Examples of Copulas 225
7.1.3 Meta Distributions 229
7.1.4 Simulation of Copulas and Meta Distributions 229
7.1.5 Further Properties of Copulas 232

7.2 Dependence Concepts and Measures 235
7.2.1 Perfect Dependence 236
7.2.2 Linear Correlation 238
7.2.3 Rank Correlation 243
7.2.4 Coefficients of Tail Dependence 247

7.3 Normal Mixture Copulas 249
7.3.1 Tail Dependence 249
7.3.2 Rank Correlations 253
7.3.3 Skewed Normal Mixture Copulas 256
7.3.4 Grouped Normal Mixture Copulas 257

7.4 Archimedean Copulas 259
7.4.1 Bivariate Archimedean Copulas 259
7.4.2 Multivariate Archimedean Copulas 261

7.5 Fitting Copulas to Data 265
7.5.1 Method-of-Moments Using Rank Correlation 266
7.5.2 Forming a Pseudo-sample from the Copula 269
7.5.3 Maximum Likelihood Estimation 270

8 Aggregate Risk 275
8.1 Coherent and Convex Risk Measures 275
8.1.1 Risk Measures and Acceptance Sets 276
8.1.2 Dual Representation of Convex Measures of Risk 280
8.1.3 Examples of Dual Representations 283

8.2 Law-Invariant Coherent Risk Measures 286
8.2.1 Distortion Risk Measures 286
8.2.2 The Expectile Risk Measure 290
Contents

8.3 Risk Measures for Linear Portfolios 293
 8.3.1 Coherent Risk Measures as Stress Tests 293
 8.3.2 Elliptically Distributed Risk Factors 295
 8.3.3 Other Risk Factor Distributions 297

8.4 Risk Aggregation 299
 8.4.1 Aggregation Based on Loss Distributions 300
 8.4.2 Aggregation Based on Stressing Risk Factors 302
 8.4.3 Modular versus Fully Integrated Aggregation Approaches 303
 8.4.4 Risk Aggregation and Fréchet Problems 305

8.5 Capital Allocation 315
 8.5.1 The Allocation Problem 315
 8.5.2 The Euler Principle and Examples 316
 8.5.3 Economic Properties of the Euler Principle 320

III Applications 323

9 Market Risk 325
 9.1 Risk Factors and Mapping 326
 9.1.1 The Loss Operator 326
 9.1.2 Delta and Delta–Gamma Approximations 327
 9.1.3 Mapping Bond Portfolios 329
 9.1.4 Factor Models for Bond Portfolios 332
 9.2 Market Risk Measurement 338
 9.2.1 Conditional and Unconditional Loss Distributions 339
 9.2.2 Variance–Covariance Method 340
 9.2.3 Historical Simulation 342
 9.2.4 Dynamic Historical Simulation 343
 9.2.5 Monte Carlo 346
 9.2.6 Estimating Risk Measures 347
 9.2.7 Losses over Several Periods and Scaling 349
 9.3 Backtesting 351
 9.3.1 Violation-Based Tests for VaR 352
 9.3.2 Violation-Based Tests for Expected Shortfall 354
 9.3.3 Elicitability and Comparison of Risk Measure Estimates 355
 9.3.4 Empirical Comparison of Methods Using Backtesting Concepts 358
 9.3.5 Backtesting the Predictive Distribution 363

10 Credit Risk 366
 10.1 Credit-Risky Instruments 367
 10.1.1 Loans 367
 10.1.2 Bonds 368
 10.1.3 Derivative Contracts Subject to Counterparty Risk 369
 10.1.4 Credit Default Swaps and Related Credit Derivatives 370
 10.1.5 PD, LGD and EAD 372
 10.2 Measuring Credit Quality 374
 10.2.1 Credit Rating Migration 374
 10.2.2 Rating Transitions as a Markov Chain 376
 10.3 Structural Models of Default 380
 10.3.1 The Merton Model 380
 10.3.2 Pricing in Merton’s Model 381
 10.3.3 Structural Models in Practice: EDF and DD 386
 10.3.4 Credit-Migration Models Revisited 389
10.4 Bond and CDS Pricing in Hazard Rate Models

10.4.1 Hazard Rate Models 391
10.4.2 Risk-Neutral Pricing Revisited 394
10.4.3 Bond Pricing 399
10.4.4 CDS Pricing 401
10.4.5 P versus Q: Empirical Results 404

10.5 Pricing with Stochastic Hazard Rates

10.5.1 Doubly Stochastic Random Times 406
10.5.2 Pricing Formulas 411
10.5.3 Applications 413

10.6 Affine Models

10.6.1 Basic Results 417
10.6.2 The CIR Square-Root Diffusion 418
10.6.3 Extensions 420

11 Portfolio Credit Risk Management

11.1 Threshold Models 426
11.1.1 Notation for One-Period Portfolio Models 426
11.1.2 Threshold Models and Copulas 428
11.1.3 Gaussian Threshold Models 430
11.1.4 Models Based on Alternative Copulas 431
11.1.5 Model Risk Issues 433

11.2 Mixture Models 436
11.2.1 Bernoulli Mixture Models 436
11.2.2 One-Factor Bernoulli Mixture Models 437
11.2.3 Recovery Risk in Mixture Models 440
11.2.4 Threshold Models as Mixture Models 441
11.2.5 Poisson Mixture Models and CreditRisk$^+$ 444

11.3 Asymptotics for Large Portfolios 449
11.3.1 Exchangeable Models 450
11.3.2 General Results 452
11.3.3 The Basel IRB Formula 455

11.4 Monte Carlo Methods 457
11.4.1 Basics of Importance Sampling 457
11.4.2 Application to Bernoulli Mixture Models 460

11.5 Statistical Inference in Portfolio Credit Models 464
11.5.1 Factor Modelling in Industry Threshold Models 465
11.5.2 Estimation of Bernoulli Mixture Models 466
11.5.3 Mixture Models as GLMMs 470
11.5.4 A One-Factor Model with Rating Effect 472

12 Portfolio Credit Derivatives

12.1 Credit Portfolio Products 476
12.1.1 Collateralized Debt Obligations 477
12.1.2 Credit Indices and Index Derivatives 481
12.1.3 Basic Pricing Relationships for Index Swaps and CDOs 484

12.2 Copula Models 487
12.2.1 Definition and Properties 487
12.2.2 Examples 489

12.3 Pricing of Index Derivatives in Factor Copula Models 491
12.3.1 Analytics 491
12.3.2 Correlation Skews 494
12.3.3 The Implied Copula Approach 497
13 Operational Risk and Insurance Analytics

13.1 Operational Risk in Perspective
13.1.1 An Important Risk Class
13.1.2 The Elementary Approaches
13.1.3 Advanced Measurement Approaches
13.1.4 Operational Loss Data

13.2 Elements of Insurance Analytics
13.2.1 The Case for Actuarial Methodology
13.2.2 The Total Loss Amount
13.2.3 Approximations and Panjer Recursion
13.2.4 Poisson Mixtures
13.2.5 Tails of Aggregate Loss Distributions
13.2.6 The Homogeneous Poisson Process
13.2.7 Processes Related to the Poisson Process

IV Special Topics

14 Multivariate Time Series

14.1 Fundamentals of Multivariate Time Series
14.1.1 Basic Definitions
14.1.2 Analysis in the Time Domain
14.1.3 Multivariate ARMA Processes

14.2 Multivariate GARCH Processes
14.2.1 General Structure of Models
14.2.2 Models for Conditional Correlation
14.2.3 Models for Conditional Covariance
14.2.4 Fitting Multivariate GARCH Models
14.2.5 Dimension Reduction in MGARCH

15 Advanced Topics in Multivariate Modelling

15.1 Normal Mixture and Elliptical Distributions
15.1.1 Estimation of Generalized Hyperbolic Distributions
15.1.2 Testing for Elliptical Symmetry

15.2 Advanced Archimedean Copula Models
15.2.1 Characterization of Archimedean Copulas
15.2.2 Non-exchangeable Archimedean Copulas

16 Advanced Topics in Extreme Value Theory

16.1 Tails of Specific Models
16.1.1 Domain of Attraction of the Fréchet Distribution
16.1.2 Domain of Attraction of the Gumbel Distribution
16.1.3 Mixture Models

16.2 Self-exciting Models for Extremes
16.2.1 Self-exciting Processes
16.2.2 A Self-exciting POT Model

16.3 Multivariate Maxima
16.3.1 Multivariate Extreme Value Copulas
16.3.2 Copulas for Multivariate Minima
16.3.3 Copula Domains of Attraction
16.3.4 Modelling Multivariate Block Maxima