HANDBOOK OF MICROSIMULATION MODELLING

CATHAL O'DONOGHUE
Rural Economy and Development Programme,
Teagasc, Athenry, Ireland

United Kingdom – North America – Japan
India – Malaysia – China
Contents

List of Contributors xvii
List of Tables xix
List of Figures xxi
About the Authors xxiii

CHAPTER 1 INTRODUCTION

Cathal O'Donoghue

1.1 Introduction 1

1.1.1 Target audience 2
1.1.2 Modelling complexity 3

1.2 Overview of the handbook 5

1.2.1 Population complexity 5
1.2.2 Behavioural complexity 8
1.2.3 Temporal and spatial complexity 10
1.2.4 Policy complexity 12
1.2.5 Unit of analysis 14

1.3 Future directions 16

Acknowledgement 17
References 18

CHAPTER 2 HYPOTHETICAL MODELS

Irina Burlacu, Cathal O'Donoghue and Denisa Maria Sologon

2.1 Introduction 23

2.2 Context and uses 25

2.2.1 Context of the hypothetical models 26
2.2.2 Policy scope 28
2.2.3 Geographical scope 32
2.2.4 Analytical scope 33
2.3 Methodological characteristics and choices

2.3.1 Interaction with another model

2.3.2 Unit of analysis

2.3.3 Period of analysis

2.3.4 Unit of variation

2.3.5 Analytical measure

2.3.6 Methods to update the underlying attributes

2.3.7 Limitations

2.4 Summary and future directions

References

CHAPTER 3 STATIC MODELS

3.1 Introduction

3.2 The use of static microsimulation models

3.2.1 Policy scope

3.2.2 Geographic scope

3.2.3 Analytical scope

3.3 Methodological characteristics and choices

3.3.1 Parameterisation in static microsimulation models

3.3.2 Baseline data in static microsimulation models

3.3.3 Indexation and updating

3.3.4 Updating tax-benefit rules

3.3.5 Reweighting

3.3.6 Projections and static ageing

3.3.7 Maintenance and other issues

3.4 Summary and future directions

References

CHAPTER 4 MULTI-COUNTRY MICROSIMULATION

4.1 Introduction

4.2 Context

4.3 Methodological characteristics and choices

4.3.1 A fundamental choice

4.3.2 Software

4.3.3 Data

4.3.4 Simulations

4.4 Uses and applications

4.4.1 Comparisons of the effects of existing policies

4.4.2 Comparisons of the effects of policy changes
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.3 Supra national microsimulation</td>
<td>97</td>
</tr>
<tr>
<td>4.5 Summary and future directions</td>
<td>98</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>100</td>
</tr>
<tr>
<td>References</td>
<td>100</td>
</tr>
</tbody>
</table>

CHAPTER 5 DECOMPOSING CHANGES IN INCOME DISTRIBUTION

Olivier Bargain

5.1 Introduction	107
5.2 Context	107
5.2.1 Tax-Benefit Microsimulation	107
5.2.2 Assessing the Effect of Policy Changes Using Decomposition by Income Types	108
5.2.3 Assessing the effect of policy changes using microsimulation	110
5.3 Methodological characteristics and choices	112
5.3.1 Methodology	112
5.3.2 Choice of nominal adjustments	115
5.3.3 Choice of definition of the policy effect	117
5.3.4 Other choices	119
5.3.5 Data requirements and tax-benefit microsimulation	119
5.4 Uses and applications	120
5.4.1 Quantifying the contribution of past policy reforms	120
5.4.2 Sensitivity to base versus end year data and approximating future policy effects	126
5.5 Summary and future directions	127
References	128

CHAPTER 6 DISTRIBUTIONAL CHANGE DURING DEVELOPMENT

B. Essama-Nssah

6.1 Introduction	135
6.2 Context	137
6.3 Methodological considerations	139
6.3.1 A characterization of the statistical approach	140
6.3.2 A nonparametric method	140
6.3.3 Using regression models	142
6.3.4 Using reduced-form models	148
6.3.5 The structural approach	150
6.4 Applications	153
6.4.1 Change in the distribution of earnings	154
6.4.2 Change in the distribution of household income	155
Contents

6.4.3 Growth incidence analysis 156
6.4.4 Analysis of the impact of shocks and policy interventions 158

6.5 Summary and future directions 160
Acknowledgments 162
References 162

CHAPTER 7 LABOUR SUPPLY MODELS

Rolf Aaberge and Ugo Colombino

7.1 Introduction 167
7.1.1 Microsimulation meets microeconometrics 167
7.1.2 A frame of reference 168

7.2 Modelling strategies 170
7.2.1 The 'Reduced Form' approach 170
7.2.2 The structural 'Marginalist' approach 171
7.2.3 The random utility maximization approach 178
7.2.4 How reliable are structural models? 188

7.3 Policy simulation 189
7.3.1 Producing simulation outcomes 189
7.3.2 Examples of simulations addressing specific policies or issues 192
7.3.3 Identifying optimal systems 193

7.4 Social evaluation of policy simulations 197
7.4.1 Individual welfare functions 197
7.4.2 Social welfare functions – the primal and dual approach 200

7.5 Socially optimal income taxes 204
7.6 Conclusions and future perspectives 205
References 206

CHAPTER 8 CONSUMPTION AND INDIRECT TAX MODELS

Bart Capéau, André Decoster and David Phillips

8.1 Introduction 223
8.2 What is the role of indirect tax micro-simulation models? 226

8.3 Methodological issues and choices 230
8.3.1 Coverage of the model 230
8.3.2 The core modelling assumptions – what changes in response to a reform? 235
8.3.3 Welfare and distributional analysis 243
8.3.4 Data requirements and processing 249

8.4 Examples of indirect tax micro-simulation models 251
Contents

8.4.1 Indirect tax micro-simulation in MEXTAX 252
8.4.2 Indirect tax micro-simulation in EUROMOD 254

8.5 Summary and future directions 259

References 261
Technical appendix 266
Using expenditures and retail prices to model excise duties 266
Approximations to welfare measures of indirect tax reforms 266
Using the Cobb–Douglas indirect Utility Function and Expenditure Function to Calculate Welfare Effects 269
Engel Curves 270
Welfare Effects with the QUAIDS Demand System 271

CHAPTER 9 MACRO-MICRO MODELS 275
John Cockburn, Luc Savard and Luca Tiberti

9.1. Introduction 275
9.1.1. Context 276

9.2. Methodological characteristics and choices 276
9.2.1. The representative household approach 277
9.2.2. The fully integrated approach 278
9.2.3. The top-down micro-accounting approach 280
9.2.4. The top-down with behaviour approach 281
9.2.5. The bottom-up approach 282
9.2.6. The iterative approach 283
9.2.7. Choice of approach 284
9.2.8. Data considerations 286

9.3. Uses and applications 287
9.3.1. Structural adjustment programmes 287
9.3.2. Trade liberalization 287
9.3.3. Poverty-reduction policies 289
9.3.4. Fiscal reform 290
9.3.5. Agricultural policies 290
9.3.6. Labour market policies 291
9.3.7. Environmental policies 291

9.4. Summary and future directions 291
9.4.1. Behavioural content 291
9.4.2. Social dimensions of well-being 292
9.4.3. Education 292
9.4.4. Health 293
9.4.5. Demographics 294
9.4.6. Rehabilitating the FI approach 294
CHAPTER 10 DYNAMIC MODELS

Jinjing Li, Cathal O’Donoghue and Gijs Dekkers

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>305</td>
</tr>
<tr>
<td>10.2</td>
<td>Uses and applications</td>
<td>307</td>
</tr>
<tr>
<td>10.3</td>
<td>Methodological characteristics and choices</td>
<td>310</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Base dataset selection</td>
<td>310</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Cohort model or population model</td>
<td>314</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Ageing method in dynamic microsimulation</td>
<td>314</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Discrete or continuous time modelling</td>
<td>317</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Open versus closed model</td>
<td>318</td>
</tr>
<tr>
<td>10.3.6</td>
<td>Link between micro- and macro-models</td>
<td>319</td>
</tr>
<tr>
<td>10.3.7</td>
<td>Links and integrations with agent based models</td>
<td>320</td>
</tr>
<tr>
<td>10.3.8</td>
<td>Modelling transitions and behaviours</td>
<td>321</td>
</tr>
<tr>
<td>10.3.9</td>
<td>Alignment with projections</td>
<td>322</td>
</tr>
<tr>
<td>10.3.10</td>
<td>Model complexity</td>
<td>324</td>
</tr>
<tr>
<td>10.3.11</td>
<td>Model validation</td>
<td>325</td>
</tr>
<tr>
<td>10.4</td>
<td>Summary and future directions</td>
<td>327</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Progress of dynamic microsimulation modelling since 1970s</td>
<td>327</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Obstacles in the advancement of microsimulation, and some possible solutions</td>
<td>328</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Future directions</td>
<td>330</td>
</tr>
<tr>
<td>10.5</td>
<td>Conclusion</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>333</td>
</tr>
</tbody>
</table>

CHAPTER 11 DEMOGRAPHIC MODELS

Carl Mason

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>345</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Agent-based modeling?</td>
<td>346</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Demographic macrosimulation</td>
<td>347</td>
</tr>
<tr>
<td>11.2</td>
<td>Demographic microsimulation: applications</td>
<td>348</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Long term changes in fertility and mortality</td>
<td>348</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Rules, preferences, and household formation</td>
<td>349</td>
</tr>
<tr>
<td>11.2.3</td>
<td>HIV</td>
<td>350</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Indirect estimation of demographic quantities</td>
<td>350</td>
</tr>
</tbody>
</table>
11.3 Methodological issues

11.3.1 SOCSIM 351
11.3.2 Closed and open populations 351
11.3.3 Time 352
11.3.4 Rates over time 353
11.3.5 Events 353
11.3.6 Marriage queues 357
11.3.7 Homogamy and Spousal Age Difference 357
11.3.8 Heterogeneity 358

11.4 Rate independent population subgroups 359
11.4.1 Rate multipliers 359

11.5 Future directions 360
References 361

CHAPTER 12 SPATIAL MODELS

Robert Tanton and Graham Clarke

12.1 Introduction 367
12.2 Context 367
12.3 Methodological characteristics and choices 368
12.3.1 Classification of spatial microsimulation models 369
12.3.2 Benchmarks 370
12.3.3 Synthetic reconstruction methods 370
12.3.4 Reweighting approaches 371
12.3.5 Choosing a method 373
12.3.6 Validation 373
12.4 Uses and applications 375
12.5 Summary and future directions 376
References 377

CHAPTER 13 TRANSPORTATION MODELS

Eric J. Miller

13.1 Introduction 385
13.2 Context 386
13.3 Microsimulating travel demand 390
13.4 Microsimulating route choice and network performance 401
13.4.1 Road network modelling 402
13.4.2 Transit network modelling 407
13.4.3 Pedestrian and bicycle modelling 408
13.5 Population (agent) synthesis 410
13.6 Summary and future directions 412
References 413
CHAPTER 14 HEALTH MODELS

Deborah Schofield, Hannah Carter and Kimberley Edwards

14.1. Introduction 421
14.2. Health expenditure 421
14.3. Spatial models of health and disease 425
14.4. Mortality 429
14.5. Health workforce 435
14.6. Future developments 438
14.7. Conclusions 439
References 440

CHAPTER 15 ENVIRONMENTAL MODELS

Stephen Hynes and Cathal O'Donoghue

15.1 Introduction 449
15.2 Policy context 450
15.3 Uses and applications 452
15.3.1 Distributional incidence analysis of environmental policy 453
15.3.2 Spatial incidence environmental models 454
15.3.3 Agriculture and the environment 454
15.3.4 Resource demand 455
15.3.5 Transport and land use 456
15.3.6 Non-market valuation studies 456
15.4 Methodological characteristics and choices 457
15.4.1 Distributional incidence of environmental outcomes or policy 457
15.4.2 Modelling pollution and environmental pollution 458
15.4.3 Macro-micro model linkages 459
15.4.4 Unit of analysis 460
15.4.5 Scope and spatial disaggregation 461
15.4.6 Environmental valuation 462
15.4.7 Benefit transfer 463
15.5 Summary and future directions 465
References 467

CHAPTER 16 FIRM LEVEL MODELS

Hermann Buslei, Stefan Bach and Martin Simmler

16.1. Introduction 479
16.2. Context 480
16.3. Methodological characteristics and choices
16.3.1. What choices are available? 483
16.3.2. What are the data requirements? 489
16.4. Uses and applications 493
16.4.1. Basic government models 493
16.4.2. Advanced approaches for forecasting and policy analysis 496
16.4.3. Microsimulation as a component of broader academic studies 498
16.5. Summary and future directions 499
References 500

CHAPTER 17 FARM LEVEL MODELS 505
James W. Richardson, Thia Hennessy and Cathal O'Donoghue

17.1. Introduction 505
17.2. Policy context 506
17.3. Applications 507
17.3.1. Hypothetical analyses 508
17.3.2. Policy analysis 508
17.3.3. Impact of macro-economic change 510
17.3.4. Labour supply 511
17.3.5. Spatial models 511
17.3.6. Environmental analysis 513
17.4. Methodological choices 514
17.4.1. Farm-level Monte Carlo simulation 514
17.4.2. Optimisation modelling 521
17.4.3. Farm-level policy simulation modelling 523
17.4.4. Farm-level spatial modelling 524
17.5. Conclusions and future directions 526
References 526