Earth Endogenous System
To Answer the Current Unsolved Economic Problems
(2nd Edition)

EmProf. Hideyuki Kamiryo, PhDs
Hiroshima Shudo University, Japan

For the world’s peaceful cooperation by countries

Better Advances Press
Toronto, Canada

June 18, 2014
Contents of Texts

PART N.

Notations: Notations by Sector, Seven Endogenous Parameters, Basic Endogenous Equations, Six Organic Aspects, Structural Hyperbolas as a Base, and Essence of EES xxv
1. Notations by sector xxv
2. Seven endogenous parameters xxix
3. Basic endogenous equations in the discrete time xxx
4. Six organic aspects in endogenous equilibrium by country and sector xxxi
5. Structural hyperbolas of \( a = r^* \cdot \Omega^* \) each to \( i = I/Y \) and \( n_E = n \) xxxiii

Notes: Notes on Ryuzo Sato’s (1981) Two Conservation Laws (Theorem 6), Connected with Samuelson’s (1970) xliii
A. Fifteen points at Ryuzo Sato’s (xv, 439, 1981) Lie Theory xlv
B. Equations on the transitional path using recursive programming: towards Endogenous Turnpike 1
C. References specified to Ryuzo Sato’s Lie groups liv

Preface: Preface for the 2nd edition lvii

Keywords in Earth Endogenous System/Economics

| Theory vs. practice; Scientific discoveries; Endogenous vs. exogenous; Assumption vs. equation; The price-equilibrium vs. the endogenous-equilibrium; Policies vs. strategies and tactics; Use of Cobb-Douglas (C-D) production function vs. Non C-D equation; Discrete vs. continuous; Hyperbolas vs. parabolas; Maximize vs. minimize; Optimum point vs. its range; Speed years by country; Actual and endogenous taxes; Real assets vs. market/financial assets; The government sector vs. the private sector; The balance of payments and deficit; The rate of return & the growth rate of output in equilibrium; The endogenous Phelps coefficient; The endogenous valuation ratio; Convergence; Three axioms. |

PART I.

Chapter 1 Summary of the EES, Introduction and Framework 1
1.1 Discover whereabouts: towards purely endogenous 4
1.2 Endogenous data and system 5
1.3 Framework of the EES 8


~ vii ~
10.2.1 Contact with the holographic principle in physics 248
10.2.2 Contact with the relationship between the physical zone and the spiritual zone 249
10.2.3 Iyonoishi’s zero point as a boundary versus holographic principle’s black hole 249
10.2.4 Geometrically further, touching upon sociology and economics 251
10.2.5 ‘Theory and Realism’ and monism versus dualism 252
10.2.6 Geometrical inevitability from parabola to hyperbola 253
10.3 Some evidences reflecting the holographic principle in the endogenous system 254
10.4 Common symptoms lying between the literature and the endogenous system 257
10.5 Concluding remarks 261
Appendix A: Before and after advice given from Dr. Gerard ‘t Hooft on 26 Sept., 2011 263
Appendix B: Five to six dimensional at the real world: From Pythagoras, Gauss to Fermat, Wiles and Iyonoishi (2012) 265
Appendix C: Why do we remain circle and hyperbola plane in the endogenous system? 266
Appendix D: Shizuko Ishida’s beyond six-dimension mathematics 269
References 270

PART II.
Chapter 11 Stage Processes from Young-Developing to Robust-Developing, by Country in the Endogenous-Equilibrium 273
11.1 Introduction 274
11.2 How to classify six organic aspects to conquer difficulties at an economic stage 279
11.3 Secret of success to solve problems in young-developing countries 281
11.4 Five pattern-settings to examine balanced levels by country 284
11.5 Reinhart and Rogoff (2009), Lall (2001), Kuruvilla et al. (2002), and Castillo, A. et al. (2005): Common vs. Peculiar Characteristics 291
11.6 Conclusions 293
References 327
Chapter 12 Revisit Two Tax Multipliers, Tax and Government Spending, by Area and by Country 329
12.1 Introduction 329
12.2 Two fiscal multipliers and implications for 72 countries, 1990-2010 331
12.3 A short remark 333
Appendix: Broader interpretation of the multipliers as the inverses of the endogenous KEWT data-sets 334
References 350

Chapter 13 Government Spending and Taxes to Guarantee Growth: Samuelson’s Balanced Budget (1942) to Answer Krugman’s (July, 2012) 351
13.1 Introduction of Samuelson’s scientific discovery 352
13.2 Empirical proofs on government spending and taxes in KEWT database 6.12 by country 355
13.3 Empirical proofs using two multipliers in KEWT and its recursive programming 357
13.4 Conclusions 362
References 373

Chapter 14 Net Investment and Business Cycle: Using ‘sin’ in G and PRI Sectors 374
14.1 Proof of full-employment in the KEWT database 6.12 376
14.2 Fingleton (2012), Blinder (2012), and Bernanke and Blinder (1992): Related to Unemployment 377
14.3 Standpoint of real business cycle to obey Samuelson (1998) 381
14.4 Revisit: Ramsey (1928), Jorgenson (1963), and Jorgenson and Griliches (1967) 384
14.5 Hicks ‘sin’ business cycle in G and PRI sectors with empirical results 387
14.5.1 Structure of sin curve 388
14.5.2 Adjustment process of sin curve: five steps 389
14.5.3 Empirical adjustment process of sin curve 389
References 405

Chapter 15 Population Growth Negatively Related to Technology and Its Growth 409
15.1 Introduction: Endogenous Framework of Population to Technology 409
15.2 Simulation results of the rate of change in population, from the viewpoint of whole policies 410
15.3 For population-related hyperbolas precisely 418
15.5 Conclusions: Empirical results and implications as answers to unsolved problems 431
References 434
Special Note to Wang, Jianxiong 436
~ xi ~
Chapter 16 Recursive Programming to Reinforce the KEWT Data-sets by Country  437

16.1 Introduction  437
16.2 Theory and practice between recursive programming and the KEWT data-sets  438
  16.2.1. Relationship between recursive programming in the transitional path and the KEWT data-sets  438
  16.2.2. Proofs of relationship between the rate of technological progress and the growth rate per capita output  440
  16.2.3. Proof of the capital-output ratio and the quantitative net investment coefficient  441
  16.2.4. Justify two conditions of \( \Omega^* = \Omega_0 \) and \( r^* = r_0 \)  442
  16.2.5. Diminishing returns to capital coefficient, \( \delta_0 \), and the speed year coefficient, \( \lambda^* \)  444
16.3 Reply to Harcourt, G. C. (1972): synthesizing Keynesian and Neo-Classical models  446
  16.3.1. From unsolved to solved  446
  16.3.2. Comment to Harcourt's four diagrams  448
16.4 Results of Recursive Programming  452
16.5 Conclusions  454
Appendix Problems to be examined in recursive programming  474
References  478

Appendices Hyperbolas: Formulations, Types, Attributes, Calculations, and Graphs  480
  A. Circle behind hyperbola versus ellipse  480
  B. 12 hyperbolas by type, with 5 attributes defined and calculated  482
  C. Hyperbola graphs by country  498
  D. Endogenous equations and hyperbolas  526

Postscript Q & A: Readers' Alternatives as a Surrogate Postscript  528

References Specific References  542
  1. Author's, including the first appearances  542
  2-1. Referring to Harcourt, G. C. (1972) in Chapter 16  544
  2-2. Translator, Denzo Kamiya's supplement to Keynesians, Neo- and New-, and Neo-classicists  545
  3. Historical References influential to author's endogenous system and discoveries  546

Indexes Subject Index for Part N, Part I and Part II (Index by chapter, separated)  557