Contents

Author Biographies xv
Preface xvi
Acknowledgments xxi

Chapter 1
Introduction 1
1.1 **Forward and Futures Contracts** 5
1.2 Options 9
1.3 Swaps 10
1.4 **Using Derivatives: Some Comments** 12
1.5 The Structure of this Book 16
1.6 Exercises 17

PART ONE
Futures and Forwards 19

Chapter 2
Futures Markets 21
2.1 Introduction 21
2.2 The Functioning of Futures Exchanges 23
2.3 The Standardization of Futures Contracts 32
2.4 Closing Out Positions 35
2.5 Margin Requirements and Default Risk 37
2.6 Case Studies in Futures Markets 40
2.7 Exercises 55
Appendix 2A Futures Trading and US Regulation:
A Brief History 59
Appendix 2B Contango, Backwardation, and
Rollover Cash Flows 62

Chapter 3
Pricing Forwards and Futures I: The Basic Theory 63
3.1 Introduction 63
3.2 Pricing Forwards by Replication 64
3.3 Examples 66
3.4 Forward Pricing on Currencies and Related Assets 69
3.5 Forward-Rate Agreements 72
3.6 Concept Check 72
3.7 The Marked-to-Market Value of a Forward Contract 73
3.8 Futures Prices 75
3.9 Exercises 77
Appendix 3A Compounding Frequency 82
Appendix 3B Forward and Futures Prices with Constant Interest Rates 84
Appendix 3C Rolling Over Futures Contracts 86

Chapter 4
Pricing Forwards and Futures II: Building on the Foundations 88
4.1 Introduction 88
4.2 From Theory to Reality 88
4.3 The Implied Repo Rate 92
4.4 Transactions Costs 95
4.5 Forward Prices and Future Spot Prices 96
4.6 Index Arbitrage 97
4.7 Exercises 100
Appendix 4A Forward Prices with Convenience Yields 103

Chapter 5
Hedging with Futures and Forwards 104
5.1 Introduction 104
5.2 A Guide to the Main Results 106
5.3 The Cash Flow from a Hedged Position 107
5.4 The Case of No Basis Risk 108
5.5 The Minimum-Variance Hedge Ratio 109
5.6 Examples 112
5.7 Implementation 114
5.8 Further Issues in Implementation 115
5.9 Index Futures and Changing Equity Risk 117
5.10 Fixed-Income Futures and Duration-Based Hedging 118
5.11 Exercises 119
Appendix 5A Derivation of the Optimal Tailed Hedge Ratio h^{**} 124

Chapter 6
Interest-Rate Forwards and Futures 126
6.1 Introduction 126
6.2 Eurodollars and Libor Rates 126
6.3 Forward-Rate Agreements 127
6.4 Eurodollar Futures 133
6.5 Treasury Bond Futures 140
6.6 Treasury Note Futures 144
6.7 Treasury Bill Futures 144
6.8 Duration-Based Hedging 144
6.9 Exercises 147
Appendix 6A PVBP-Based Hedging Using Eurodollar Futures 151
Appendix 6B Calculating the Conversion Factor 152
Appendix 6C Duration as a Sensitivity Measure 153
Appendix 6D The Duration of a Futures Contract 154

PART TWO
Options 155

Chapter 7
Options Markets 157
7.1 Introduction 157
7.2 Definitions and Terminology 157
7.3 Options as Financial Insurance 158
7.4 Naked Option Positions 160
7.5 Options as Views on Market Direction and Volatility 164
7.6 Exercises 167
Appendix 7A Options Markets 169

Chapter 8
Options: Payoffs and Trading Strategies 173
8.1 Introduction 173
8.2 Trading Strategies I: Covered Calls and Protective Puts 173
8.3 Trading Strategies II: Spreads 177
8.4 Trading Strategies III: Combinations 185
8.5 Trading Strategies IV: Other Strategies 188
8.6 Which Strategies Are the Most Widely Used? 191
8.7 The Barings Case 192
8.8 Exercises 195
Appendix 8A Asymmetric Butterfly Spreads 198

Chapter 9
No-Arbitrage Restrictions on Option Prices 199
9.1 Introduction 199
9.2 Motivating Examples 199
9.3 Notation and Other Preliminaries 201
9.4 Maximum and Minimum Prices for Options 202
9.5 The Insurance Value of an Option 207
9.6 Option Prices and Contract Parameters 208
9.7 Numerical Examples 211
9.8 Exercises 213

Chapter 10
Early Exercise and Put-Call Parity 216
10.1 Introduction 216
10.2 A Decomposition of Option Prices 216
10.3 The Optimality of Early Exercise 219
10.4 Put-Call Parity 223
10.5 Exercises 229

Chapter 11
Option Pricing: A First Pass 231
11.1 Overview 231
11.2 The Binomial Model 232
11.3 Pricing by Replication in a One-Period Binomial Model 234
11.4 Comments 238
11.5 Riskless Hedge Portfolios 240
11.6 Pricing Using Risk-Neutral Probabilities 240
11.7 The One-Period Model in General Notation 244
11.8 The Delta of an Option 245
11.9 An Application: Portfolio Insurance 249
11.10 Exercises 251
Appendix 11A Riskless Hedge Portfolios and Option Pricing 255
Appendix 11B Risk-Neutral Probabilities and Arrow Security Prices 256
Appendix 11C The Risk-Neutral Probability, No-Arbitrage, and Market Completeness 257
Appendix 11D Equivalent Martingale Measures 260
Chapter 33
Reduced-Form Models of Default Risk 816
33.1 Introduction 816
33.2 Modeling Default I: Intensity Processes 817
33.3 Modeling Default II: Recovery Rate Conventions 821
33.4 The Litterman-Iben Model 823
33.5 The Duffie-Singleton Result 828
33.6 Defaultable HJM Models 830
33.7 Ratings-Based Modeling: The JLT Model 832
33.8 An Application of Reduced-Form Models: Pricing CDS 840
33.9 Summary 842
33.10 Exercises 842
Appendix 33A Duffie-Singleton in Discrete Time 846
Appendix 33B Derivation of the Drift-Volatility Relationship 847

Chapter 34
Modeling Correlated Default 850
34.1 Introduction 850
34.2 Examples of Correlated Default Products 850
34.3 Simple Correlated Default Math 852
34.4 Structural Models Based on Asset Values 855
34.5 Reduced-Form Models 861
34.6 Multiperiod Correlated Default 862
34.7 Fast Computation of Credit Portfolio Loss Distributions without Simulation 865
34.8 Copula Functions 868
34.9 Top-Down Modeling of Credit Portfolio Loss 880
34.10 Summary 884
34.11 Exercises 885

Bibliography B-1
Index I-1
The following Web chapters are available at www.mhhe.com/sd2e:

PART SIX
Computation

Chapter 35
Derivative Pricing with Finite Differencing

35.1 Introduction 3
35.2 Solving Differential Equations 4
35.3 A First Approach to Pricing Equity Options 7
35.4 Implicit Finite Differencing 13
35.5 The Crank-Nicholson Scheme 17
35.6 Finite Differencing for Term-Structure Models 19
35.7 Summary 21
35.8 Exercises 22

Chapter 36
Derivative Pricing with Monte Carlo Simulation

36.1 Introduction 23
36.2 Simulating Normal Random Variables 24
36.3 Bivariate Random Variables 25
36.4 Cholesky Decomposition 25
36.5 Stochastic Processes for Equity Prices 27
36.6 ARCH Models 29
36.7 Interest-Rate Processes 30
36.8 Estimating Historical Volatility for Equities 32
36.9 Estimating Historical Volatility for Interest Rates 32
36.10 Path-Dependent Options 33
36.11 Variance Reduction 35
36.12 Monte Carlo for American Options 38
36.13 Summary 42
36.14 Exercises 43

Chapter 37
Using Octave

37.1 Some Simple Commands 45
37.2 Regression and Integration 48
37.3 Reading in Data, Sorting, and Finding 50
37.4 Equation Solving 55
37.5 Screenshots 55