Stochastic Analysis in Production Process and Ecology Under Uncertainty
Contents

1 Introduction to Monte Carlo (MC) Method: Random Variables in Stochastic Models ... 1

2 Stochastic Model of the Diffusion of Pollutants in Landfill Management Using Monte Carlo Simulation 7
 2.1 Introduction .. 7
 2.2 Aim and Scope of the Project .. 9
 2.2.1 Constructing the Model: Defining Input Data 12
 2.3 Activating the Model: Simulation .. 15
 2.4 The Results of the Simulation ... 17
 2.4.1 Sensitivity Analysis .. 20
 2.5 The Results .. 24
 2.6 Summary and Conclusion .. 25

3 The Role of Risk Assessment in Investment Costs Management, Based on the Example of Waste Treatment (Gasification) Facility in the City of Konin ... 27
 3.1 Introduction .. 27
 3.2 Risk in Waste Management (Environmental Protection) in European Union and International Legislation 27
 3.3 The Application of MC Simulation, Using Simlab® Software, in the Analysis of Investment Risk: Probabilistic Cost Model of the Construction Project of the Waste Treatment Facility in the City of Konin ... 28
 3.4 Developing the Model ... 29
 3.5 Defining Input Data: Organising the Simulation 32
 3.6 Activating the Model: The Results of the Simulation 32
 3.7 Summary and Conclusion .. 41
4 Stochastic Analysis of the Environmental Impact of Energy Production Processes, Based on the Example of MSP

Power Plant ... 47
4.1 Introduction .. 47
4.2 Origin and Development of the LCA Method 48
4.3 Defining the LCA Method .. 50
4.4 Uncertainty and Random Variables in LCA Research 51
4.5 Types of Random Variables in Uncertainty Analysis in LCA Studies .. 56
4.6 Life Cycle Assessment of the Impact on Natural Environment of Energy Generation Processes in MSP S.A., Unit in Kraków, Poland ... 66
4.6.1 Aim and Scope of the Project 66
4.7 Description of Energy Generation Processes in MSP S.A., Unit in Kraków, Poland ... 67
4.8 Description of the Functional Unit of the Boundary System of the Performed Analysis: Inventory Analysis 70
4.9 The Life Cycle Impact Assessment LCA 73
4.10 Stochastic Analysis of the Environmental Impact of the Four Scenarios of Energy Generation Processes in MSP Power Plant .. 75
4.11 Defining Input Data: Organising the Simulation 79
4.12 The Results of the Simulation 82
4.13 Sensitivity Analysis .. 87
4.13.1 Tornado Chart .. 91
4.13.2 Spider Chart .. 94
4.14 Summary and Conclusion .. 107

5 Stochastic Analysis, Using Monte Carlo (MC) Simulation, of the Life Cycle Management of Waste, from an Annual Perspective, Generated by MSP ... 111
5.1 Introduction .. 111
5.2 Characterisation of Waste Management in the Discussed Facilities .. 112
5.2.1 The Coke Production Facility: Coke Plant 112
5.2.2 The Ore Sintering Facility: Sintering Plant 112
5.2.3 The Pig Iron Melting Facility: Blast Furnaces 113
5.2.4 The Steel Melting Facility: Converter Plant 113
5.2.5 The Continuous Steel Casting Facility: CSC 114
5.2.6 The Facility for Hot Rolling of Ferrous Metals: Hot Strip Mill .. 114
5.2.7 The Fuel Combustion Facility: Thermal-Electric Power Station (Power Plant) .. 115
5.3 Aim and Scope of the Analysis 116
5.4 Waste Management Balance, Analysis Assumptions 117
5.5 The Life Cycle Impact Assessment: Interpretation 121
5.6 The Analysis of the Results .. 133
5.7 Stochastic Analysis as an Uncertainty Calculation Tool in the LCA Study ... 134
5.8 The Results of the Simulation ... 136
5.9 Sensitivity Analysis ... 137
5.10 The Results of the Simulation .. 144
5.11 Sensitivity Analysis .. 146
5.12 Summary and Conclusion ... 148

6 Summary ... 151
6.1 General Conclusion .. 153

Bibliography ... 155