Flag-signs in the margins designate a route: either Route 1 (which is entirely contained in Route 2), or Route 2 (which is entirely contained in Route 3), or Route 3; see the Preface and Introduction for a more detailed description of these routes. A new flag-sign is posted only at the moment of a route change.

Introduction

Chapter 0. Preliminary Facts from Probability and Interest

1 Probability and Random Variables ... 7
 1.1 Sample space, events, probability measure 7
 1.2 Independence and conditional probabilities 8
 1.3 Random variables, random vectors, and their distributions 10
 1.3.1 Random variables .. 10
 1.3.2 Random vectors .. 11
 1.3.3 Cumulative distribution functions 14
 1.3.4 Quantiles .. 16
 1.3.5 Mixtures of distributions ... 17

2 Expectation ... 18
 2.1 Definitions ... 18
 2.2 Integration by parts and a formula for expectation 21
 2.3 Can we encounter an infinite expected value in models of real phe-
 nomena? ... 21
 2.4 Moments of r.v.'s. Correlation .. 23
 2.4.1 Variance and other moments ... 23
 2.4.2 The Cauchy-Schwarz inequality 23
 2.4.3 Covariance and correlation .. 24

2.5 Inequalities for deviations .. 25

2.6 Linear transformations of r.v.'s. Normalization 26

3 Some Basic Distributions ... 27
 3.1 Discrete distributions .. 27
 3.1.1 The binomial distribution .. 27
 3.1.2 The multinomial distribution ... 28
 3.1.3 The geometric distribution ... 28
 3.1.4 The negative binomial distribution 29
 3.1.5 The Poisson distribution .. 30
 3.2 Continuous distributions .. 31
 3.2.1 The uniform distribution and simulation of r.v.'s 31
Contents

3.2.2 The exponential distribution 33
3.2.3 The χ²(gamma)-distribution 34
3.2.4 The normal distribution 36

4 Moment Generating Functions 37
4.1 Laplace transform 37
4.2 An example when a m.g.f. does not exist 39
4.3 The m.g.f.'s of basic distributions 39
4.3.1 The binomial distribution 39
4.3.2 The geometric and negative binomial distributions 39
4.3.3 The Poisson distribution 40
4.3.4 The uniform distribution 40
4.3.5 The exponential and gamma distributions 40
4.3.6 The normal distribution 41
4.4 The moment generating function and moments 41
4.5 Expansions for m.g.f.'s 42
4.5.1 Taylor's expansions for m.g.f.'s 42
4.5.2 Cumulants 43

5 Convergence of Random Variables and Distributions 44

6 Limit Theorems 47
6.1 The Law of Large Numbers 47
6.2 The Central Limit Theorem 48

7 Conditional Expectations. Conditioning 49
7.1 Conditional expectation given a r.v. 49
7.1.1 The discrete case 49
7.1.2 The case of continuous distributions 51
7.2 Properties of conditional expectations 54
7.3 Conditioning and some useful formulas 56
7.3.1 A formula for variance 56
7.3.2 More detailed representations of the formula for total expectation 56
7.4 Conditional expectation given a random vector 58
7.4.1 General definitions 58
7.4.2 On conditioning in the multi-dimensional case 59
7.4.3 On the infinite-dimensional case 60

8 Elements of the Theory of Interest 61
8.1 Compound interest 61
8.2 Nominal rate 64
8.3 Discount and annuities 64
8.4 Accumulated value 66
8.5 Effective and nominal discount rates 66

9 Exercises .. 67
Contents

Chapter 1. Comparison of Random Variables. Preferences of Individuals \(69\)

1 A General Framework and First Criteria \(69\)

1.1 Preference order \(69\)

1.2 Several simple criteria \(72\)

1.2.1 The mean-value criterion \(72\)

1.2.2 Value-at-Risk (VaR) \(72\)

1.2.3 An important remark: risk measures rather than criteria \(75\)

1.2.4 Tail-Value-at-Risk (TailVaR) \(75\)

1.2.5 The mean-variance criterion \(79\)

1.3 On coherent measures of risk \(82\)

2 Comparison of R.V.'s and Limit Theorems \(86\)

2.1 A simple model of insurance with many clients \(86\)

2.2 St. Petersburg's paradox \(88\)

3 Expected Utility \(89\)

3.1 Expected utility maximization \(89\)

3.1.1 Utility function \(89\)

3.1.2 Expected utility maximization criterion \(90\)

3.1.3 Some "classical" examples of utility functions \(93\)

3.2 Utility and insurance \(95\)

3.3 How to determine the utility function in particular cases \(98\)

3.4 Risk aversion \(98\)

3.4.1 A definition \(98\)

3.4.2 Jensen's inequality \(100\)

3.4.3 How to measure risk aversion in the EUM case \(101\)

3.4.4 Proofs \(103\)

3.5 A new perspective: EUM as a linear criterion \(104\)

3.5.1 Preferences on distributions \(104\)

3.5.2 The first stochastic dominance \(105\)

3.5.3 The second stochastic dominance \(107\)

3.5.4 The EUM criterion \(108\)

3.5.5 Linearity of the utility functional \(110\)

3.5.6 An axiomatic approach \(113\)

4 Non-Linear Criteria \(115\)

4.1 Allais' paradox \(115\)

4.2 Weighted utility \(116\)

4.3 Implicit or comparative utility \(119\)

4.3.1 Definitions and examples \(119\)

4.3.2 In what sense the implicit utility criterion is linear \(121\)

4.4 Rank Dependent Expected Utility \(123\)

4.4.1 Definitions and examples \(123\)

4.4.2 Application to insurance \(126\)

4.4.3 Further discussion and the main axiom \(126\)

5 Optimal Payment from the Standpoint of an Insured \(129\)

5.1 Arrow's theorem \(129\)

5.2 A generalization \(132\)
Chapter 2. An Individual Risk Model for a Short Period

1 The Distribution of an Individual Payment

1.1 The distribution of the loss given that it has occurred

1.1.1 Characterization of tails

1.1.2 Some particular light-tailed distributions

1.1.3 Some particular heavy-tailed distributions

1.1.4 The asymptotic behavior of tails and moments

1.2 The distribution of the loss

1.3 The distribution of the payment and types of insurance

2 The Aggregate Payment

2.1 Convolutions

2.1.1 Definition and examples

2.1.2 Some classical examples

2.1.3 An additional remark regarding convolutions:

Stable distributions

2.1.4 The analogue of the binomial formula for convolutions

2.2 Moment generating functions

3 Premiums and Solvency. Approximations for Aggregate Claim Distributions

3.1 Premiums and normal approximation. A heuristic approach

3.1.1 Normal approximation and security loading

3.1.2 An important remark: the standard deviation principle

3.2 A rigorous estimation

3.3 The number of contracts needed to maintain a given security level

3.4 Approximations taking into account the asymmetry of S

3.4.1 The skewness coefficient

3.4.2 The \(\Gamma \)-approximation

3.4.3 Asymptotic expansions and Normal Power approximation

4 Some General Premium Principles

5 Exercises

Chapter 3. A Collective Risk Model for a Short Period

1 Three Basic Propositions

2 Counting or Frequency Distributions

2.1 The Poisson distribution and theorem

2.1.1 A heuristic approximation

2.1.2 The accuracy of the Poisson approximation

2.2 Some other “counting” distributions

2.2.1 The mixed Poisson distribution

2.2.2 Compound mixing

2.2.3 The \((a,b,0)\) and \((a,b,1)\) (or Katz-Panjer’s) classes
Contents

3 The Distribution of the Aggregate Claim ... 215
 3.1 The case of a homogeneous group ... 215
 3.1.1 The convolution method ... 215
 3.1.2 The case where N has a Poisson distribution 219
 3.1.3 The m.g.f. method .. 222
 3.2 The case of several homogeneous groups 223
 3.2.1 The probability of coming from a particular group 224
 3.2.2 A general scheme and reduction to one group 225

4 Premiums and Solvency. Normal Approximation 228
 4.1 Limit theorems .. 228
 4.1.1 The Poisson case ... 228
 4.1.2 The general case .. 228
 4.2 Estimation of premiums .. 233
 4.3 The accuracy of normal approximation 235
 4.4 Proof of Theorem 12 ... 236

5 Exercises ... 238

Chapter 4. Random Processes and their Applications I 243

1 A General Framework and Typical Situations 243
 1.1 Preliminaries ... 243
 1.2 Processes with independent increments 245
 1.2.1 The simplest counting process 245
 1.2.2 Brownian motion ... 245
 1.3 Markov processes ... 248

2 Poisson and Other Counting Processes ... 250
 2.1 The homogeneous Poisson process .. 250
 2.2 The non-homogeneous Poisson process 254
 2.2.1 A model and examples .. 254
 2.2.2 Another perspective: Infinitesimal approach 257
 2.2.3 Proof of Proposition 1 ... 258
 2.3 The Cox process ... 260

3 Compound Processes .. 261

 4.1 Preliminaries ... 263
 4.2 Variables defined on a Markov chain. Cash flows 269
 4.2.1 Variables defined on states ... 269
 4.2.2 Mean discounted payments .. 271
 4.2.3 The case of absorbing states 273
 4.2.4 Variables defined on transitions 275
 4.2.5 What to do if the chain is not homogeneous 276
 4.3 The first step analysis. An infinite horizon 277
 4.3.1 Mean discounted payments in the case of infinite time horizon ... 278
 4.3.2 The first step approach to random walk problems 279
 4.4 Limiting probabilities and stationary distributions 284
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>The ergodicity property and classification of states</td>
<td>289</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Classes of states</td>
<td>289</td>
</tr>
<tr>
<td>4.5.2</td>
<td>The recurrence property</td>
<td>290</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Recurrence and travel times</td>
<td>293</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Recurrence and ergodicity</td>
<td>294</td>
</tr>
<tr>
<td>5</td>
<td>Exercises</td>
<td>296</td>
</tr>
</tbody>
</table>

Chapter 5. Random Processes and their Applications II

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brownian Motion and Its Generalizations</td>
<td>303</td>
</tr>
<tr>
<td>1.1</td>
<td>More on properties of the standard Brownian motion</td>
<td>303</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Non-differentiability of trajectories</td>
<td>303</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Brownian motion as an approximation. The Donsker-Prokhorov invariance principle</td>
<td>304</td>
</tr>
<tr>
<td>1.1.3</td>
<td>The distribution of w_t, hitting times, and the maximum value of Brownian motion</td>
<td>305</td>
</tr>
<tr>
<td>1.2</td>
<td>The Brownian motion with drift</td>
<td>308</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Modeling of the surplus process. What a Brownian motion with drift approximates in this case</td>
<td>308</td>
</tr>
<tr>
<td>1.2.2</td>
<td>A reduction to the standard Brownian motion</td>
<td>310</td>
</tr>
<tr>
<td>1.3</td>
<td>Geometric Brownian motion</td>
<td>311</td>
</tr>
<tr>
<td>2</td>
<td>Martingales</td>
<td>312</td>
</tr>
<tr>
<td>2.1</td>
<td>Two formulas of a general nature</td>
<td>312</td>
</tr>
<tr>
<td>2.2</td>
<td>Martingales: General properties and examples</td>
<td>313</td>
</tr>
<tr>
<td>2.3</td>
<td>Martingale transform</td>
<td>319</td>
</tr>
<tr>
<td>2.4</td>
<td>Optional stopping time and some applications</td>
<td>320</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Definitions and examples</td>
<td>320</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Wald's identity</td>
<td>323</td>
</tr>
<tr>
<td>2.4.3</td>
<td>The ruin probability for the simple random walk</td>
<td>325</td>
</tr>
<tr>
<td>2.4.4</td>
<td>The ruin probability for the Brownian motion with drift</td>
<td>326</td>
</tr>
<tr>
<td>2.4.5</td>
<td>The distribution of the ruin time in the case of Brownian motion</td>
<td>328</td>
</tr>
<tr>
<td>2.4.6</td>
<td>The hitting time for the Brownian motion with drift</td>
<td>329</td>
</tr>
<tr>
<td>2.5</td>
<td>Generalizations</td>
<td>330</td>
</tr>
<tr>
<td>2.5.1</td>
<td>The martingale property in the case of random stopping time</td>
<td>330</td>
</tr>
<tr>
<td>2.5.2</td>
<td>A reduction to the standard Brownian motion in the case of random time</td>
<td>331</td>
</tr>
<tr>
<td>2.5.3</td>
<td>The distribution of the ruin time in the case of Brownian motion: another approach</td>
<td>332</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Proof of Theorem 12</td>
<td>333</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Verification of Condition 3 of Theorem 6</td>
<td>334</td>
</tr>
<tr>
<td>3</td>
<td>Exercises</td>
<td>335</td>
</tr>
</tbody>
</table>
Contents

Chapter 6. Global Characteristics of the Surplus Process

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A General Framework</td>
<td>339</td>
</tr>
<tr>
<td>2</td>
<td>Ruin Models</td>
<td>342</td>
</tr>
<tr>
<td>2.1</td>
<td>Adjustment coefficients and ruin probabilities</td>
<td>343</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Lundberg's inequality</td>
<td>343</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Proof of Lundberg's inequality</td>
<td>345</td>
</tr>
<tr>
<td>2.1.3</td>
<td>The main theorem</td>
<td>346</td>
</tr>
<tr>
<td>2.2</td>
<td>Computing adjustment coefficients</td>
<td>348</td>
</tr>
<tr>
<td>2.2.1</td>
<td>A general proposition</td>
<td>348</td>
</tr>
<tr>
<td>2.2.2</td>
<td>The discrete time case: Examples</td>
<td>351</td>
</tr>
<tr>
<td>2.2.3</td>
<td>The discrete time case: The adjustment coefficient for a group of insured units</td>
<td>353</td>
</tr>
<tr>
<td>2.2.4</td>
<td>The case of a homogeneous compound Poisson process</td>
<td>354</td>
</tr>
<tr>
<td>2.2.5</td>
<td>The discrete time case revisited</td>
<td>357</td>
</tr>
<tr>
<td>2.2.6</td>
<td>The case of non-homogeneous compound Poisson processes</td>
<td>358</td>
</tr>
<tr>
<td>2.3</td>
<td>Finding an initial surplus</td>
<td>359</td>
</tr>
<tr>
<td>2.4</td>
<td>Trade-off between the premium and initial surplus</td>
<td>360</td>
</tr>
<tr>
<td>2.5</td>
<td>Three cases where the ruin probability may be computed precisely</td>
<td>363</td>
</tr>
<tr>
<td>2.5.1</td>
<td>The case with an exponentially distributed claim size</td>
<td>363</td>
</tr>
<tr>
<td>2.5.2</td>
<td>The case of the simple random walk</td>
<td>364</td>
</tr>
<tr>
<td>2.5.3</td>
<td>The case of Brownian motion</td>
<td>365</td>
</tr>
<tr>
<td>2.6</td>
<td>The martingale approach and a generalization of Theorem 2</td>
<td>365</td>
</tr>
<tr>
<td>2.7</td>
<td>The renewal approach</td>
<td>368</td>
</tr>
<tr>
<td>2.7.1</td>
<td>The first surplus below the initial level</td>
<td>368</td>
</tr>
<tr>
<td>2.7.2</td>
<td>The renewal approximation</td>
<td>369</td>
</tr>
<tr>
<td>2.7.3</td>
<td>The Cramér-Lundberg approximation</td>
<td>372</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Proof of Theorem 5 from Section 2.7.1</td>
<td>373</td>
</tr>
<tr>
<td>2.8</td>
<td>Some recurrent relations and computational aspects</td>
<td>377</td>
</tr>
<tr>
<td>3</td>
<td>Criteria Connected with Paying Dividends</td>
<td>380</td>
</tr>
<tr>
<td>3.1</td>
<td>A general model</td>
<td>381</td>
</tr>
<tr>
<td>3.2</td>
<td>The case of the simple random walk</td>
<td>383</td>
</tr>
<tr>
<td>3.3</td>
<td>Finding an optimal strategy</td>
<td>386</td>
</tr>
<tr>
<td>4</td>
<td>Exercises</td>
<td>387</td>
</tr>
</tbody>
</table>

Chapter 7. Survival Distributions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Probability Distribution of Lifetime</td>
<td>391</td>
</tr>
<tr>
<td>1.1</td>
<td>Survival functions and force of mortality</td>
<td>391</td>
</tr>
<tr>
<td>1.2</td>
<td>The time-until-death for a person of a given age</td>
<td>396</td>
</tr>
<tr>
<td>1.3</td>
<td>Curtate-future-lifetime</td>
<td>400</td>
</tr>
<tr>
<td>1.4</td>
<td>Survivorship groups</td>
<td>401</td>
</tr>
<tr>
<td>1.5</td>
<td>Life tables and interpolation</td>
<td>402</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Life tables</td>
<td>402</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Interpolation for fractional ages</td>
<td>407</td>
</tr>
</tbody>
</table>
Contents

1.6 Analytical laws of mortality .. 409

2 A Multiple Decrement Model .. 411
 2.1 A single life .. 411
 2.2 Another view: net probabilities of decrement 415
 2.3 Survivorship group ... 419
 2.4 Proof of Proposition 1 ... 420

3 Multiple Life Models ... 421
 3.1 The joint distribution .. 422
 3.2 The lifetime of statuses ... 424
 3.3 A model of dependency: conditional independence 428
 3.3.1 A definition and the first example 429
 3.3.2 The common shock model ... 430

4 Exercises ... 432

Chapter 8. Life Insurance Models

1 A General Model ... 437
 1.1 The present value of a future payment 437
 1.2 The present value of payments for a portfolio of many policies .. 440

2 Some Particular Types of Contracts ... 443
 2.1 Whole life insurance .. 443
 2.1.1 The continuous time case (benefits payable at the moment of death) .. 443
 2.1.2 The discrete time case (benefits payable at the end of the year of death) 443
 2.1.3 A relation between A_x and \bar{A}_x 446
 2.1.4 The case of benefits payable at the end of the m-thly period ... 447
 2.2 Deferred whole life insurance .. 449
 2.2.1 The continuous time case ... 449
 2.2.2 The discrete time case ... 450
 2.3 Term insurance .. 450
 2.3.1 Continuous time .. 450
 2.3.2 Discrete time .. 452
 2.4 Endowments .. 453
 2.4.1 Pure endowment .. 453
 2.4.2 Endowment ... 454

3 Varying Benefits .. 456
 3.1 Certain payments ... 456
 3.2 Random payments .. 460

4 Multiple Decrement and Multiple Life Models 461
 4.1 Multiple decrements ... 461
 4.2 Multiple life insurance ... 464

5 On the Actuarial Notation .. 467

6 Exercises ... 467
Contents

Chapter 9. **Annuity Models** 473

1 Two Approaches to the Evaluation of Annuities ... 473
 1.1 Continuous annuities ... 473
 1.2 Discrete annuities .. 475

2 Level Annuities. A Connection with Insurance .. 478
 2.1 Certain annuities .. 478
 2.2 Random annuities ... 479

3 Some Particular Types of Level Annuities .. 480
 3.1 Whole life annuities .. 480
 3.2 Temporary annuities .. 483
 3.3 Deferred annuities ... 486
 3.4 Certain and life annuities .. 489

4 More on Varying Payments ... 491

5 Annuities with m-thly Payments ... 493

6 Multiple Decrement and Multiple Life Models .. 495
 6.1 Multiple decrement .. 495
 6.2 Multiple life annuities ... 498

7 Exercises .. 500

Chapter 10. **Premiums and Reserves** 505

1 Premium Annuities ... 505
 1.1 General principles ... 505
 1.2 Benefit premiums: The case of a single risk 507
 1.2.1 Net rate ... 507
 1.2.2 The case where “Y is consistent with Z” 511
 1.2.3 Variances ... 512
 1.2.4 Premiums paid m times a year .. 514
 1.2.5 Combinations of insurances .. 515
 1.3 Accumulated values ... 516
 1.4 Percentile premiums .. 517
 1.4.1 The case of a single risk .. 517
 1.4.2 The case of many risks. Normal approximation 519
 1.5 Exponential premiums ... 522

2 Reserves .. 523
 2.1 Definitions and preliminary remarks ... 523
 2.2 Examples of direct calculations ... 524
 2.3 Formulas for some standard types of insurance 526
 2.4 Recursive relations ... 527

3 Exercises ... 530

Chapter 11. **Pensions Plans** 533

1 Valuation of Individual Pension Plans .. 533
 1.1 DB plans .. 534
 1.1.1 The APV of future benefits .. 534
 1.1.2 More examples of the benefit rate function \(B(x,h,y) \) 536