Discrete-Event Simulation and System Dynamics for Management Decision Making

Editors

Sally Brailsford
Southampton Business School, University of Southampton, UK

Leonid Churilov
Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
RMIT University, Melbourne, Victoria, Australia

Brian Dangerfield
Salford Business School, University of Salford, UK
Contents

Preface xv
List of contributors xvii

1 Introduction 1
Sally Brailsford, Leonid Churilov and Brian Dangerfield
1.1 How this book came about 1
1.2 The editors 2
1.3 Navigating the book 3
References 9

2 Discrete-event simulation: A primer 10
Stewart Robinson
2.1 Introduction 10
2.2 An example of a discrete-event simulation: Modelling a hospital theatres process 11
2.3 The technical perspective: How DES works 12
2.3.1 Time handling in DES 14
2.3.2 Random sampling in DES 15
2.4 The philosophical perspective: The DES worldview 21
2.5 Software for DES 23
2.6 Conclusion 24
References 24

3 Systems thinking and system dynamics: A primer 26
Brian Dangerfield
3.1 Introduction 26
3.2 Systems thinking
3.2.1 ‘Behaviour over time’ graphs 28
3.2.2 Archetypes 29
3.2.3 Principles of influence (or causal loop) diagrams 30
3.2.4 From diagrams to behaviour 32
3.3 System dynamics 34
3.3.1 Principles of stock–flow diagramming 34
3.3.2 Model purpose and model conceptualisation 35
3.3.3 Adding auxiliaries, parameters and information links to the spinal stock–flow structure 36
3.3.4 Equation writing and dimensional checking 37

3.4 Some further important issues in SD modelling 40
3.4.1 Use of soft variables 40
3.4.2 Co-flows 42
3.4.3 Delays and smoothing functions 43
3.4.4 Model validation 46
3.4.5 Optimisation of SD models 48
3.4.6 The role of data in SD models 49

3.5 Further reading 49
References 50

4 Combining problem structuring methods with simulation: The philosophical and practical challenges 52
Kathy Kotiadis and John Mingers

4.1 Introduction 52
4.2 What are problem structuring methods? 53
4.3 Multiparadigm multimethodology in management science 54
 4.3.1 Paradigm incommensurability 55
 4.3.2 Cultural difficulties 57
 4.3.3 Cognitive difficulties 58
 4.3.4 Practical problems 59

4.4 Relevant projects and case studies 60
4.5 The case study: Evaluating intermediate care 62
 4.5.1 The problem situation 62
 4.5.2 Soft systems methodology 64
 4.5.3 Discrete-event simulation modelling 66
 4.5.4 Multimethodology 67

4.6 Discussion 68
 4.6.1 The multiparadigm multimethodology position and strategy 68
 4.6.2 The cultural difficulties 70
 4.6.3 The cognitive difficulties 70

4.7 Conclusions 72
Acknowledgements 72
References 72

5 Philosophical positioning of discrete-event simulation and system dynamics as management science tools for process systems: A critical realist perspective 76
Kristian Rotaru, Leonid Churilov and Andrew Flitman

5.1 Introduction 76
5.2 Ontological and epistemological assumptions of CR 80
 5.2.1 The stratified CR ontology 80
 5.2.2 The abductive mode of reasoning 81
5.3 Process system modelling with SD and DES through the prism of CR scientific positioning 82
5.3.1 Lifecycle perspective on SD and DES methods 84
5.4 Process system modelling with SD and DES: Trends in and implications for MS 90
5.5 Summary and conclusions 97
References 99

6 Theoretical comparison of discrete-event simulation and system dynamics 105
Sally Brailsford
6.1 Introduction 105
6.2 System dynamics 106
6.3 Discrete-event simulation 108
6.4 Summary: The basic differences 110
6.5 Example: Modelling emergency care in Nottingham 112
6.5.1 Background 112
6.5.2 The ECOD project 113
6.5.3 Choice of modelling approach 114
6.5.4 Quantitative phase 114
6.5.5 Model validation 116
6.5.6 Scenario testing and model results 116
6.5.7 The ED model 118
6.5.8 Discussion 119
6.6 The $64 000 question: Which to choose? 120
6.7 Conclusion 123
References 123

7 Models as interfaces 125
Steffen Bayer, Tim Bolt, Sally Brailsford and Maria Kapsali
7.1 Introduction: Models at the interfaces or models as interfaces 125
7.2 The social roles of simulation 126
7.3 The modelling process 129
7.4 The modelling approach 131
7.5 Two case studies of modelling projects 134
7.6 Summary and conclusions 137
References 138

8 An empirical study comparing model development in discrete-event simulation and system dynamics 140
Antuela Tako and Stewart Robinson
8.1 Introduction 140
8.2 Existing work comparing DES and SD modelling 142
8.2.1 DES and SD model development process 143
8.2.2 Summary 146
8.3 The study
 8.3.1 The case study
 8.3.2 Verbal protocol analysis
 8.3.3 The VPA sessions
 8.3.4 The subjects
 8.3.5 The coding process
8.4 Study results
 8.4.1 Attention paid to modelling topics
 8.4.2 The sequence of modelling stages
 8.4.3 Pattern of iterations among topics
8.5 Observations from the DES and SD expert modellers’ behaviour
8.6 Conclusions
Acknowledgements
References

9 Explaining puzzling dynamics: A comparison of system dynamics and discrete-event simulation
John Morecroft and Stewart Robinson
9.1 Introduction
9.2 Existing comparisons of SD and DES
9.3 Research focus
9.4 Erratic fisheries – chance, destiny and limited foresight
9.5 Structure and behaviour in fisheries: A comparison of SD and DES models
 9.5.1 Alternative models of a natural fishery
 9.5.2 Alternative models of a simple harvested fishery
 9.5.3 Alternative models of a harvested fishery with endogenous ship purchasing
9.6 Summary of findings
9.7 Limitations of the study
9.8 SD or DES?
Acknowledgements
References

10 DES view on simulation modelling: SIMUL8
Mark Elder
10.1 Introduction
10.2 How software fits into the project
10.3 Building a DES
10.4 Getting the right results from a DES
 10.4.1 Verification and validation
 10.4.2 Replications
10.5 What happens after the results?
10.6 What else does DES software do and why?
10.7 What next for DES software? 213
References 214

11 Vensim and the development of system dynamics 215
Lee Jones
11.1 Introduction 215
11.2 Coping with complexity: The need for system dynamics 216
11.3 Complexity arms race 219
11.4 The move to user-led innovation 221
11.5 Software support 222
 11.5.1 Apples and oranges (basic model testing) 223
 11.5.2 Confidence 224
 11.5.3 Helping the practitioner do more 237
11.6 The future for SD software 245
 11.6.1 Innovation 245
 11.6.2 Communication 245
References 247

12 Multi-method modeling: AnyLogic 248
Andrei Borshchev
12.1 Architectures 249
 12.1.1 The choice of model architecture and methods 251
12.2 Technical aspect of combining modeling methods 252
 12.2.1 System dynamics → discrete elements 252
 12.2.2 Discrete elements → system dynamics 253
 12.2.3 Agent based ↔ discrete event 255
12.3 Example: Consumer market and supply chain 257
 12.3.1 The supply chain model 257
 12.3.2 The market model 258
 12.3.3 Linking the DE and the SD parts 259
 12.3.4 The inventory policy 260
12.4 Example: Epidemic and clinic 262
 12.4.1 The epidemic model 262
 12.4.2 The clinic model and the integration of methods 264
12.5 Example: Product portfolio and investment policy 267
 12.5.1 Assumptions 268
 12.5.2 The model architecture 270
 12.5.3 The agent product and agent population portfolio 271
 12.5.4 The investment policy 274
 12.5.5 Closing the loop and implementing launch of new products 275
 12.5.6 Completing the investment policy 277
12.6 Discussion 278
References 279
13 Multiscale modelling for public health management: A practical guide
Rosemarie Sadsad and Geoff McDonnell

13.1 Introduction 280
13.2 Background 281
13.3 Multilevel system theories and methodologies 281
13.4 Multiscale simulation modelling and management 283
13.5 Discussion 289
13.6 Conclusion 290
References 290

14 Hybrid modelling case studies
Rosemarie Sadsad, Geoff McDonnell, Joe Viana, Shivam M. Desai, Paul Harper and Sally Brailsford

14.1 Introduction 295
14.2 A multilevel model of MRSA endemicity and its control in hospitals
14.2.1 Introduction 296
14.2.2 Method 296
14.2.3 Results 297
14.2.4 Conclusion 302
14.3 Chlamydia composite model 302
14.3.1 Introduction 302
14.3.2 Chlamydia 302
14.3.3 DES model of a GUM department 303
14.3.4 SD model of chlamydia 304
14.3.5 Why combine the models 304
14.3.6 How the models were combined 305
14.3.7 Experiments with the composite model 305
14.3.8 Conclusions 307
14.4 A hybrid model for social care services operations 308
14.4.1 Introduction 308
14.4.2 Population model 308
14.4.3 Model construction 309
14.4.4 Contact centre model 310
14.4.5 Hybrid model 311
14.4.6 Conclusions and lessons learnt 313
References 316

15 The ways forward: A personal view of system dynamics and discrete-event simulation
Michael Pidd

15.1 Genesis 318
15.2 Computer simulation in management science 319
15.3 The effect of developments in computing 320
15.4 The importance of process 324
15.5 My own comparison of the simulation approaches 324
15.5.1 Time handling 324
15.5.2 Stochastic and deterministic elements 326
15.5.3 Discrete entities versus continuous variables 327
15.6 Linking system dynamics and discrete-event simulation 328
15.7 The importance of intended model use 329
15.7.1 Decision automation 330
15.7.2 Routine decision support 331
15.7.3 System investigation and improvement 331
15.7.4 Providing insights for debate 332
15.8 The future? 333
15.8.1 Use of both methods will continue to grow 333
15.8.2 Developments in computing will continue to have an effect 334
15.8.3 Process really matters 335

References 335

Index 337