Contents

Reading this Book xv
Acknowledgments xvii

1 Hybrid Assets 1
  1.1 Introduction 1
  1.2 Hybrid Capital 3
  1.3 Preferreds 5
  1.4 Convertible Bonds 7
  1.5 Contingent Convertibles 7
  1.6 Other Types of Hybrid Debt 13
    1.6.1 Hybrid Bank Capital 7
    1.6.2 Hybrid Corporate Capital 14
    1.6.3 Toggle Bonds 14
  1.7 Regulation 15
    1.7.1 Making Failures Less Likely 15
    1.7.2 Making Failures Less Disruptive 15
  1.8 Bail-In Capital 16
  1.9 Risk and Rating 17
    1.9.1 Risk 17
    1.9.2 Rating 18
  1.10 Conclusion 18

2 Convertible Bonds 19
  2.1 Introduction 19
  2.2 Anatomy of a Convertible Bond 22
    2.2.1 Final Payoff 22
    2.2.2 Price Graph 22
    2.2.3 Quotation of a Convertible Bond 23
    2.2.4 Bond Floor ($B_F$) 25
    2.2.5 Parity 27
    2.2.6 Convexity 27
    2.2.7 Optional Conversion 33
2.2.8 Forced Conversion 35
2.2.9 Mandatory Conversion 35
2.3 Convertible Bond Arbitrage 37
2.3.1 Components of Risk 37
2.3.2 Delta 42
2.3.3 Delta Hedging 45
2.3.4 Different Notions of Delta 45
2.3.5 Greeks 46
2.4 Standard Features 47
2.4.1 Issuer Call 47
2.4.2 Put 50
2.4.3 Coupons 53
2.4.4 Dividends 56
2.5 Additional Features 58
2.5.1 Dividend Protection 58
2.5.2 Take-Over Protection 59
2.5.3 Refixes 60
2.6 Other Convertible Bond Types 62
2.6.1 Exchangeables 62
2.6.2 Synthetic Convertibles 63
2.6.3 Cross-Currency Convertibles 64
2.6.4 Reverse Convertibles 66
2.6.5 Convertible Preferreds 67
2.6.6 Make-Whole 67
2.6.7 Contingent Conversion 67
2.6.8 Convertible Bond Option 68
2.7 Convertible Bond Terminology 68
2.7.1 144A 68
2.7.2 Fixed-Income Metrics 68
2.8 Convertible Bond Market 73
2.8.1 Market Participants 73
2.8.2 Investors 74
2.9 Conclusion 76

3 Contingent Convertibles (CoCos) 77
3.1 Introduction 77
3.2 Definition 78
3.3 Anatomy
3.3.1 Loss-Absorption Mechanism 79
3.3.2 Trigger 83
3.3.3 Host Instrument 86
3.4 CoCos and Convertible Bonds 87
3.4.1 Forced vs. Optional Conversion 87
3.4.2 Negative vs. Positive Convexity 88
3.4.3 Limited vs. Unlimited Upside 89
3.4.4 Similarity to Reverse Convertibles 89
5.5.3 Availability of Bail-In Bonds 136
5.5.4 Paying Bankers in Bail-In Bonds 136
5.6 Conclusion 137

6 Modeling Hybrids: An Introduction 139
6.1 Introduction 139
6.2 Heuristic Approaches 140
   6.2.1 Corporate Hybrids: Yield of a Callable Bond 140
   6.2.2 Convertible Bonds: Break Even 142
6.3 Building Models 143
   6.3.1 Introduction 143
   6.3.2 Martingales 145
   6.3.3 Model Map 146
   6.3.4 Cheapness 147
6.4 How Many Factors? 149
6.5 Sensitivity Analysis 152
   6.5.1 Introduction 152
   6.5.2 Non-linear Model 153

7 Modeling Hybrids: Stochastic Processes 159
7.1 Introduction 159
7.2 Probability Density Functions 159
   7.2.1 Introduction 159
   7.2.2 Normal Distribution 160
   7.2.3 Lognormal Distribution 161
   7.2.4 Exponential Distribution 162
   7.2.5 Poisson Distribution 163
7.3 Brownian Motion 164
7.4 Ito Process 165
   7.4.1 Introduction 165
   7.4.2 Ito’s Lemma 166
   7.4.3 Share Prices as Geometric Brownian Motion 169
7.5 Poisson Process 172
   7.5.1 Definition 172
   7.5.2 Advanced Poisson Processes 174
   7.5.3 Conclusion 176

8 Modeling Hybrids: Risk Neutrality 177
8.1 Introduction 177
8.2 Closed-Form Solution 180
   8.2.1 Introduction 180
   8.2.2 Black–Scholes Solution 182
   8.2.3 Solving the Black–Scholes Equation 183
   8.2.4 Case Study: Reverse Convertible 184
8.3 Tree-Based Methods 186
   8.3.1 Introduction 186
   8.3.2 Framework 187
### 8.3.3 Geometry of the Trinomial Tree 189
### 8.3.4 Modeling Share Prices on a Trinomial Tree 193
### 8.3.5 European Options on a Trinomial Tree 199
### 8.3.6 American Options 200
### 8.3.7 Bermudan Options: Imposing a Particular Time Slice 203

### 8.4 Finite Difference Technique 204
### 8.5 Monte Carlo 205
  - 8.5.1 Introduction 205
  - 8.5.2 Generating Random Numbers 206

### 9 Modeling Hybrids: Advanced Issues 211

#### 9.1 Tail Risk in Hybrids 211
#### 9.2 Jump Diffusion 212
  - 9.2.1 Introduction 212
  - 9.2.2 Share Price Process with Jump to Default 214
  - 9.2.3 Trinomial Trees with Jump to Default 217
  - 9.2.4 Pricing Convertible Bonds with Jump Diffusion 221
  - 9.2.5 Lost in Translation 226

#### 9.3 Correlation 227
  - 9.3.1 Correlation Risk in Hybrids 227
  - 9.3.2 Definition 228
  - 9.3.3 Correlating Wiener Processes 229
  - 9.3.4 Cholesky Factorization 230
  - 9.3.5 Cholesky Example 233
  - 9.3.6 Correlating Events 234
  - 9.3.7 Using Equity Correlation 235
  - 9.3.8 Case Study: Correlated Defaults 237
  - 9.3.9 Case Study: Asset Correlation vs. Default Correlation 238

#### 9.4 Structural Models 240
#### 9.5 Conclusion 242

### 10 Modeling Hybrids: Handling Credit 243

#### 10.1 Credit Spread 243
  - 10.1.1 Definition 243
  - 10.1.2 Working with Credit Spreads 244
  - 10.1.3 Option-Adjusted Spread 246

#### 10.2 Default Intensity 246
  - 10.2.1 Introduction 246

#### 10.3 Credit Default Swaps 248
  - 10.3.1 Definition 248
  - 10.3.2 Example of a CDS Curve 250
  - 10.3.3 Availability of CDS Data 250
  - 10.3.4 Premium and Credit Leg 251
  - 10.3.5 Valuation 252
  - 10.3.6 Rule of Thumb 255
  - 10.3.7 Market Convention 256
  - 10.3.8 Case Study: Implied Default Probability 257
# Contents

10.4 Credit Triangle 259
   10.4.1 Definition 259
   10.4.2 Case Study 260
   10.4.3 The Big Picture 263
10.5 Stochastic Credit 263

11 Constant Elasticity of Variance 267
   11.1 From Black–Scholes to CEV 267
      11.1.1 Introduction 267
      11.1.2 Leverage Effect 268
      11.1.3 Link with Black–Scholes 269
   11.2 Historical Parameter Estimation 270
   11.3 Valuation: Analytical Solution 274
      11.3.1 Moving Away from Black–Scholes 274
      11.3.2 Semi-Closed-Form Formula 275
      11.3.3 Numerical Example 276
   11.4 Valuation: Trinomial Trees for CEV 277
      11.4.1 American Options 277
      11.4.2 Trinomial Trees for CEV 277
      11.4.3 Numerical Example 279
   11.5 Jump-Extended CEV Process 283
      11.5.1 Introduction 283
      11.5.2 JDCEV-Generated Skew 284
      11.5.3 Convertible Bonds Priced under JDCEV 284
   11.6 Case Study: Pricing Mandatories with CEV 286
      11.6.1 Mandatory Conversion 286
      11.6.2 Numerical Example 287
   11.7 Case Study: Pricing Convertibles with a Reset 288
      11.7.1 Refixing the Conversion Price 288
      11.7.2 Involvement of CEV 291
      11.7.3 Numerical Example 292
   11.8 Calibration of CEV 295
      11.8.1 Introduction 295
      11.8.2 Local or Global Calibration 296
      11.8.3 Calibrating CEV: Step by Step 296

12 Pricing Contingent Debt 301
   12.1 Introduction 301
   12.2 Credit Derivatives Method 302
      12.2.1 Introduction 302
      12.2.2 Loss 302
      12.2.3 Trigger Intensity ($\lambda_{\text{Trigger}}$) 303
      12.2.4 CoCo Spread Calculation Example 305
      12.2.5 Case Study: Lloyds Contingent Convertibles 305
   12.3 Equity Derivatives Method 307
      12.3.1 Introduction 307
      12.3.2 Step 1: Zero-Coupon CoCo 308
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3.3</td>
<td>Step 2: Adding Coupons</td>
<td>309</td>
</tr>
<tr>
<td>12.3.4</td>
<td>Numerical Example</td>
<td>311</td>
</tr>
<tr>
<td>12.3.5</td>
<td>Case Study: Lloyds Contingent Convertibles</td>
<td>313</td>
</tr>
<tr>
<td>12.3.6</td>
<td>Case Study: Tier 1 and Tier 2 CoCos</td>
<td>316</td>
</tr>
<tr>
<td>12.4</td>
<td>Coupon Deferral</td>
<td>317</td>
</tr>
<tr>
<td>12.5</td>
<td>Using Lattice Models</td>
<td>321</td>
</tr>
<tr>
<td>12.6</td>
<td>Linking Credit to Equity</td>
<td>323</td>
</tr>
<tr>
<td>12.6.1</td>
<td>Introduction</td>
<td>323</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Hedging Credit Through Equity</td>
<td>326</td>
</tr>
<tr>
<td>12.6.3</td>
<td>Credit Elasticity</td>
<td>326</td>
</tr>
<tr>
<td>12.7</td>
<td>CoCos with Upside: CoCoCo</td>
<td>329</td>
</tr>
<tr>
<td>12.7.1</td>
<td>Downside Balanced with Upside</td>
<td>329</td>
</tr>
<tr>
<td>12.7.2</td>
<td>Numerical Example</td>
<td>330</td>
</tr>
<tr>
<td>12.8</td>
<td>Adding Stochastic Credit</td>
<td>333</td>
</tr>
<tr>
<td>12.8.1</td>
<td>Two-Factor Model</td>
<td>333</td>
</tr>
<tr>
<td>12.8.2</td>
<td>Monte Carlo Method</td>
<td>335</td>
</tr>
<tr>
<td>12.8.3</td>
<td>Pricing CoCos in a Two-Factor Model</td>
<td>337</td>
</tr>
<tr>
<td>12.8.4</td>
<td>Case Study</td>
<td>338</td>
</tr>
<tr>
<td>12.9</td>
<td>Avoiding Death Spirals</td>
<td>339</td>
</tr>
<tr>
<td>12.10</td>
<td>Appendix: Pricing Contingent Debt on a Trinomial Tree</td>
<td>341</td>
</tr>
<tr>
<td>12.10.1</td>
<td>Generalized Procedure</td>
<td>341</td>
</tr>
<tr>
<td>12.10.2</td>
<td>Positioning Nodes on the Trigger</td>
<td>343</td>
</tr>
<tr>
<td>12.10.3</td>
<td>Solving the CoCo Price</td>
<td>345</td>
</tr>
<tr>
<td>13</td>
<td>Multi-Factor Models for Hybrids</td>
<td>347</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>347</td>
</tr>
<tr>
<td>13.2</td>
<td>Early Exercise</td>
<td>348</td>
</tr>
<tr>
<td>13.3</td>
<td>American Monte Carlo</td>
<td>352</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Longstaff and Schwartz (LS) Technique</td>
<td>352</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Convergence</td>
<td>356</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Example: Longstaff and Schwartz (LS) Step by Step</td>
<td>356</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Adding Calls and Puts</td>
<td>362</td>
</tr>
<tr>
<td>13.4</td>
<td>Multi-Factor Models</td>
<td>364</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Adding Stochastic Interest Rates</td>
<td>364</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Equity–Interest Rate Correlation</td>
<td>365</td>
</tr>
<tr>
<td>13.4.3</td>
<td>Adapting Longstaff and Schwartz (LS)</td>
<td>366</td>
</tr>
<tr>
<td>13.4.4</td>
<td>Convertible Bond under Stochastic Interest Rates</td>
<td>367</td>
</tr>
<tr>
<td>13.4.5</td>
<td>Adding Investor Put</td>
<td>371</td>
</tr>
<tr>
<td>13.5</td>
<td>Conclusion</td>
<td>371</td>
</tr>
</tbody>
</table>

References 373

Index 381