Contents

- List of figures ... xii
- List of tables ... xv
- List of boxes ... xvii
- List of screenshots ... xix
- Preface to the third edition ... xxiv
- Acknowledgements ... xxv

1 Introduction
1.1 What is econometrics? .. 1
1.2 Is financial econometrics different from `economic econometrics'? 2
1.3 Types of data .. 4
1.4 Returns in financial modelling 7
1.5 Steps involved in formulating an econometric model 11
1.6 Points to consider when reading articles in empirical finance 12
1.7 A note on Bayesian versus classical statistics 13
1.8 An introduction to EViews ... 14
1.9 Further reading .. 24
1.10 Outline of the remainder of this book 24

2 Mathematical and statistical foundations
2.1 Functions ... 28
2.2 Differential calculus .. 37
2.3 Matrices ... 41
2.4 Probability and probability distributions 56
2.5 Descriptive statistics .. 61

3 A brief overview of the classical linear regression model
3.1 What is a regression model? .. 75
3.2 Regression versus correlation ... 76
3.3 Simple regression ... 76
3.4 Some further terminology .. 84
3.5 Simple linear regression in EViews – estimation of an optimal hedge ratio 86
3.6 The assumptions underlying the classical linear regression model 90
3.7 Properties of the OLS estimator 91
3.8 Precision and standard errors 93
3.9 An introduction to statistical inference 98
3.10 A special type of hypothesis test: the t-ratio 111
3.11 An example of a simple t-test of a theory in finance: can US mutual funds beat the market? 113
3.12 Can UK unit trust managers beat the market? 115
3.13 The overreaction hypothesis and the UK stock market 116
3.14 The exact significance level 120
3.15 Hypothesis testing in EViews – example 1: hedging revisited 121
3.16 Hypothesis testing in EViews – example 2: the CAPM 123
Appendix: Mathematical derivations of CLRM results 127

4 Further development and analysis of the classical linear regression model 134
4.1 Generalising the simple model to multiple linear regression 134
4.2 The constant term 135
4.3 How are the parameters (the elements of the β vector) calculated in the generalised case? 137
4.4 Testing multiple hypotheses: the F-test 139
4.5 Sample EViews output for multiple hypothesis tests 144
4.6 Multiple regression in EViews using an APT-style model 145
4.7 Data mining and the true size of the test 150
4.8 Goodness of fit statistics 151
4.9 Hedonic pricing models 156
4.10 Tests of non-nested hypotheses 159
4.11 Quantile regression 161
Appendix 4.1: Mathematical derivations of CLRM results 168
Appendix 4.2: A brief introduction to factor models and principal components analysis 170

5 Classical linear regression model assumptions and diagnostic tests 179
5.1 Introduction 179
5.2 Statistical distributions for diagnostic tests 180
5.3 Assumption 1: $E(u_i) = 0$ 181
5.4 Assumption 2: $\text{var}(u_i) = \sigma^2 < \infty$ 181
5.5 Assumption 3: $\text{cov}(u_i, u_j) = 0$ for $i \neq j$ 188
5.6 Assumption 4: the x_i are non-stochastic 208
5.7 Assumption 5: the disturbances are normally distributed 209
5.8 Multicollinearity 217
5.9 Adopting the wrong functional form 220
5.10 Omission of an important variable 224
5.11 Inclusion of an irrelevant variable 225
5.12 Parameter stability tests
5.13 Measurement errors
5.14 A strategy for constructing econometric models and a discussion of model-building philosophies
5.15 Determinants of sovereign credit ratings

6 Univariate time series modelling and forecasting
6.1 Introduction
6.2 Some notation and concepts
6.3 Moving average processes
6.4 Autoregressive processes
6.5 The partial autocorrelation function
6.6 ARMA processes
6.7 Building ARMA models: the Box–Jenkins approach
6.8 Constructing ARMA models in EViews
6.9 Examples of time series modelling in finance
6.10 Exponential smoothing
6.11 Forecasting in econometrics
6.12 Forecasting using ARMA models in EViews
6.13 Exponential smoothing models in EViews

7 Multivariate models
7.1 Motivations
7.2 Simultaneous equations bias
7.3 So how can simultaneous equations models be validly estimated?
7.4 Can the original coefficients be retrieved from the πs?
7.5 Simultaneous equations in finance
7.6 A definition of exogeneity
7.7 Triangular systems
7.8 Estimation procedures for simultaneous equations systems
7.9 An application of a simultaneous equations approach to modelling bid–ask spreads and trading activity
7.10 Simultaneous equations modelling using EViews
7.11 Vector autoregressive models
7.12 Does the VAR include contemporaneous terms?
7.13 Block significance and causality tests
7.14 VARs with exogenous variables
7.15 Impulse responses and variance decompositions
7.16 VAR model example: the interaction between property returns and the macroeconomy
7.17 VAR estimation in EViews

8 Modelling long-run relationships in finance
8.1 Stationarity and unit root testing
8.2 Tests for unit roots in the presence of structural breaks
8.3 Testing for unit roots in EViews
8.4 Cointegration
8.5 Equilibrium correction or error correction models
8.6 Testing for cointegration in regression: a residuals-based approach
8.7 Methods of parameter estimation in cointegrated systems
8.8 Lead–lag and long-term relationships between spot and futures markets
8.9 Testing for and estimating cointegrating systems using the Johansen technique based on VARs
8.10 Purchasing power parity
8.11 Cointegration between international bond markets
8.12 Testing the expectations hypothesis of the term structure of interest rates
8.13 Testing for cointegration and modelling cointegrated systems using EViews

9 Modelling volatility and correlation
9.1 Motivations: an excursion into non-linearity land
9.2 Models for volatility
9.3 Historical volatility
9.4 Implied volatility models
9.5 Exponentially weighted moving average models
9.6 Autoregressive volatility models
9.7 Autoregressive conditionally heteroscedastic (ARCH) models
9.8 Generalised ARCH (GARCH) models
9.9 Estimation of ARCH/GARCH models
9.10 Extensions to the basic GARCH model
9.11 Asymmetric GARCH models
9.12 The GJR model
9.13 The EGARCH model
9.14 GJR and EGARCH in EViews
9.15 Tests for asymmetries in volatility
9.16 GARCH-in-mean
9.17 Uses of GARCH-type models including volatility forecasting
9.18 Testing non-linear restrictions or testing hypotheses about non-linear models
9.19 Volatility forecasting: some examples and results from the literature
9.20 Stochastic volatility models revisited
9.21 Forecasting covariances and correlations
9.22 Covariance modelling and forecasting in finance: some examples
9.23 Simple covariance models
9.24 Multivariate GARCH models
9.25 Direct correlation models
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.26</td>
<td>Extensions to the basic multivariate GARCH model</td>
<td>472</td>
</tr>
<tr>
<td>9.27</td>
<td>A multivariate GARCH model for the CAPM with time-varying covariances</td>
<td>474</td>
</tr>
<tr>
<td>9.28</td>
<td>Estimating a time-varying hedge ratio for FTSE stock index returns</td>
<td>475</td>
</tr>
<tr>
<td>9.29</td>
<td>Multivariate stochastic volatility models</td>
<td>478</td>
</tr>
<tr>
<td>9.30</td>
<td>Estimating multivariate GARCH models using EViews</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>Appendix: Parameter estimation using maximum likelihood</td>
<td>484</td>
</tr>
<tr>
<td>10</td>
<td>Switching models</td>
<td>490</td>
</tr>
<tr>
<td>10.1</td>
<td>Motivations</td>
<td>490</td>
</tr>
<tr>
<td>10.2</td>
<td>Seasonalities in financial markets: introduction and literature review</td>
<td>492</td>
</tr>
<tr>
<td>10.3</td>
<td>Modelling seasonality in financial data</td>
<td>493</td>
</tr>
<tr>
<td>10.4</td>
<td>Estimating simple piecewise linear functions</td>
<td>500</td>
</tr>
<tr>
<td>10.5</td>
<td>Markov switching models</td>
<td>502</td>
</tr>
<tr>
<td>10.6</td>
<td>A Markov switching model for the real exchange rate</td>
<td>503</td>
</tr>
<tr>
<td>10.7</td>
<td>A Markov switching model for the gilt-equity yield ratio</td>
<td>506</td>
</tr>
<tr>
<td>10.8</td>
<td>Estimating Markov switching models in EViews</td>
<td>510</td>
</tr>
<tr>
<td>10.9</td>
<td>Threshold autoregressive models</td>
<td>513</td>
</tr>
<tr>
<td>10.10</td>
<td>Estimation of threshold autoregressive models</td>
<td>515</td>
</tr>
<tr>
<td>10.11</td>
<td>Specification tests in the context of Markov switching and</td>
<td>516</td>
</tr>
<tr>
<td></td>
<td>threshold autoregressive models: a cautionary note</td>
<td></td>
</tr>
<tr>
<td>10.12</td>
<td>A SETAR model for the French franc–German mark exchange rate</td>
<td>517</td>
</tr>
<tr>
<td>10.13</td>
<td>Threshold models and the dynamics of the FTSE 100 index and</td>
<td>519</td>
</tr>
<tr>
<td></td>
<td>index futures markets</td>
<td></td>
</tr>
<tr>
<td>10.14</td>
<td>A note on regime switching models and forecasting accuracy</td>
<td>523</td>
</tr>
<tr>
<td>11</td>
<td>Panel data</td>
<td>526</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction – what are panel techniques and why are they used?</td>
<td>526</td>
</tr>
<tr>
<td>11.2</td>
<td>What panel techniques are available?</td>
<td>528</td>
</tr>
<tr>
<td>11.3</td>
<td>The fixed effects model</td>
<td>529</td>
</tr>
<tr>
<td>11.4</td>
<td>Time-fixed effects models</td>
<td>531</td>
</tr>
<tr>
<td>11.5</td>
<td>Investigating banking competition using a fixed effects model</td>
<td>532</td>
</tr>
<tr>
<td>11.6</td>
<td>The random effects model</td>
<td>536</td>
</tr>
<tr>
<td>11.7</td>
<td>Panel data application to credit stability of banks in Central and</td>
<td>537</td>
</tr>
<tr>
<td></td>
<td>Eastern Europe</td>
<td></td>
</tr>
<tr>
<td>11.8</td>
<td>Panel data with EViews</td>
<td>541</td>
</tr>
<tr>
<td>11.9</td>
<td>Panel unit root and cointegration tests</td>
<td>547</td>
</tr>
<tr>
<td>11.10</td>
<td>Further reading</td>
<td>557</td>
</tr>
<tr>
<td>12</td>
<td>Limited dependent variable models</td>
<td>559</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction and motivation</td>
<td>559</td>
</tr>
<tr>
<td>12.2</td>
<td>The linear probability model</td>
<td>560</td>
</tr>
</tbody>
</table>
12.3 The logit model 562
12.4 Using a logit to test the pecking order hypothesis 563
12.5 The probit model 565
12.6 Choosing between the logit and probit models 565
12.7 Estimation of limited dependent variable models 565
12.8 Goodness of fit measures for linear dependent variable models 567
12.9 Multinomial linear dependent variables 568
12.10 The pecking order hypothesis revisited – the choice between financing methods 571
12.11 Ordered response linear dependent variables models 574
12.12 Are unsolicited credit ratings biased downwards? An ordered probit analysis 574
12.13 Censored and truncated dependent variables 579
12.14 Limited dependent variable models in EViews 583
Appendix: The maximum likelihood estimator for logit and probit models 589

13 Simulation methods 591
13.1 Motivations 591
13.2 Monte Carlo simulations 592
13.3 Variance reduction techniques 593
13.4 Bootstrapping 597
13.5 Random number generation 600
13.6 Disadvantages of the simulation approach to econometric or financial problem solving 601
13.7 An example of Monte Carlo simulation in econometrics: deriving a set of critical values for a Dickey–Fuller test 603
13.8 An example of how to simulate the price of a financial option 607
13.9 An example of bootstrapping to calculate capital risk requirements 613

14 Conducting empirical research or doing a project or dissertation in finance 626
14.1 What is an empirical research project and what is it for? 626
14.2 Selecting the topic 627
14.3 Sponsored or independent research? 629
14.4 The research proposal 631
14.5 Working papers and literature on the internet 631
14.6 Getting the data 633
14.7 Choice of computer software 634
14.8 Methodology 634
14.9 Event studies 634
14.10 Tests of the CAPM and the Fama–French Methodology 648
14.11 How might the finished project look? 661
14.12 Presentational issues 666

Appendix 1 Sources of data used in this book 667
Appendix 2 Tables of statistical distributions 668

Glossary 680
References 697
Index 710