High-Frequency Financial Econometrics

Yacine Aït-Sahalia and Jean Jacod

Princeton University Press
Princeton and Oxford
Contents

Preface xvii

Notation xxiii

I Preliminary Material 1

1 From Diffusions to Semimartingales 3
 1.1 Diffusions ... 5
 1.1.1 The Brownian Motion 5
 1.1.2 Stochastic Integrals 8
 1.1.3 A Central Example: Diffusion Processes 12
 1.2 Lévy Processes 16
 1.2.1 The Law of a Lévy Process 17
 1.2.2 Examples 20
 1.2.3 Poisson Random Measures 24
 1.2.4 Integrals with Respect to Poisson Random Mea­
 sures .. 27
 1.2.5 Path Properties and Lévy-Itô Decomposition . 30
 1.3 Semimartingales 35
 1.3.1 Definition and Stochastic Integrals 35
 1.3.2 Quadratic Variation 38
 1.3.3 Itô’s Formula 40
 1.3.4 Characteristics of a Semimartingale and the Lévy-
 Itô Decomposition 43
 1.4 Itô Semimartingales 44
 1.4.1 The Definition 44
 1.4.2 Extension of the Probability Space 46
 1.4.3 The Grigelionis Form of an Itô Semimartingale . 47
1.4.4 A Fundamental Example: Stochastic Differential Equations Driven by a Lévy Process 49
1.5 Processes with Conditionally Independent Increments 52
 1.5.1 Processes with Independent Increments 53
 1.5.2 A Class of Processes with \mathcal{F}-Conditionally Independent Increments 54

2 Data Considerations 57
 2.1 Mechanisms for Price Determination 58
 2.1.1 Limit Order and Other Market Mechanisms 59
 2.1.2 Market Rules and Jumps in Prices 61
 2.1.3 Sample Data: Transactions, Quotes and NBBO 62
 2.2 High-Frequency Data Distinctive Characteristics 64
 2.2.1 Random Sampling Times 65
 2.2.2 Market Microstructure Noise and Data Errors 66
 2.2.3 Non-normality 67
 2.3 Models for Market Microstructure Noise 68
 2.3.1 Additive Noise 68
 2.3.2 Rounding Errors 72
 2.4 Strategies to Mitigate the Impact of Noise 73
 2.4.1 Downsampling 73
 2.4.2 Filtering Transactions Using Quotes 74

II Asymptotic Concepts 79

3 Introduction to Asymptotic Theory: Volatility Estimation for a Continuous Process 83
 3.1 Estimating Integrated Volatility in Simple Cases 85
 3.1.1 Constant Volatility 85
 3.1.2 Deterministic Time-Varying Volatility 87
 3.1.3 Stochastic Volatility Independent of the Driving Brownian Motion W 88
 3.1.4 From Independence to Dependence for the Stochastic Volatility 90
 3.2 Stable Convergence in Law 91
 3.3 Convergence for Stochastic Processes 96
 3.4 General Stochastic Volatility 99
 3.5 What If the Process Jumps? 106
4 With Jumps: An Introduction to Power Variations

4.1 Power Variations

4.1.1 The Purely Discontinuous Case
4.1.2 The Continuous Case
4.1.3 The Mixed Case

4.2 Estimation in a Simple Parametric Example: Merton’s Model

4.2.1 Some Intuition for the Identification or Lack Thereof: The Impact of High Frequency
4.2.2 Asymptotic Efficiency in the Absence of Jumps
4.2.3 Asymptotic Efficiency in the Presence of Jumps
4.2.4 GMM Estimation
4.2.5 GMM Estimation of Volatility with Power Variations

4.3 References

5 High-Frequency Observations: Identifiability and Asymptotic Efficiency

5.1 Classical Parametric Models

5.1.1 Identifiability
5.1.2 Efficiency for Fully Identifiable Parametric Models
5.1.3 Efficiency for Partly Identifiable Parametric Models

5.2 Identifiability for Lévy Processes and the Blumenthal-Getoor Indices

5.2.1 About Mutual Singularity of Laws of Lévy Processes
5.2.2 The Blumenthal-Getoor Indices and Related Quantities for Lévy Processes

5.3 Discretely Observed Semimartingales: Identifiable Parameters

5.3.1 Identifiable Parameters: A Definition
5.3.2 Identifiable Parameters: Examples

5.4 Tests: Asymptotic Properties

5.5 Back to the Lévy Case: Disentangling the Diffusion Part from Jumps
Contents

5.5.1 The Parametric Case 155
5.5.2 The Semi-Parametric Case 156
5.6 Blumenthal-Getoor Indices for Lévy Processes: Efficiency via Fisher’s Information 160
5.7 References ... 163

III Volatility .. 165

6 Estimating Integrated Volatility: The Base Case with No Noise and Equidistant Observations 169
6.1 When the Process Is Continuous 171
6.1.1 Feasible Estimation and Confidence Bounds 173
6.1.2 The Multivariate Case 176
6.1.3 About Estimation of the Quarticity 177
6.2 When the Process Is Discontinuous 179
6.2.1 Truncated Realized Volatility 180
6.2.2 Choosing the Truncation Level: The One-Dimensional Case .. 187
6.2.3 Multipower Variations 191
6.2.4 Truncated Bipower Variations 194
6.2.5 Comparing Truncated Realized Volatility and Multipower Variations 196
6.3 Other Methods ... 197
6.3.1 Range-Based Volatility Estimators 197
6.3.2 Range-Based Estimators in a Genuine High-Frequency Setting ... 198
6.3.3 Nearest Neighbor Truncation 199
6.3.4 Fourier-Based Estimators 200
6.4 Finite Sample Refinements for Volatility Estimators 202
6.5 References ... 207

7 Volatility and Microstructure Noise 209
7.1 Models of Microstructure Noise 211
7.1.1 Additive White Noise 211
7.1.2 Additive Colored Noise 212
7.1.3 Pure Rounding Noise 213
7.1.4 A Mixed Case: Rounded White Noise 215
7.1.5 Realized Volatility in the Presence of Noise 216
7.2 Assumptions on the Noise ... 220
7.3 Maximum-Likelihood and Quasi Maximum-Likelihood
 Estimation .. 224
 7.3.1 A Toy Model: Gaussian Additive White Noise and
 Brownian Motion ... 224
 7.3.2 Robustness of the MLE to Stochastic Volatility 228
7.4 Quadratic Estimators ... 231
7.5 Subsampling and Averaging: Two-Scales Realized
 Volatility ... 232
7.6 The Pre-averaging Method .. 238
 7.6.1 Pre-averaging and Optimality 245
 7.6.2 Adaptive Pre-averaging 247
7.7 Flat Top Realized Kernels ... 250
7.8 Multi-scales Estimators ... 253
7.9 Estimation of the Quadratic Covariation 254
7.10 References .. 256

8 Estimating Spot Volatility ... 259
 8.1 Local Estimation of the Spot Volatility 261
 8.1.1 Some Heuristic Considerations 261
 8.1.2 Consistent Estimation 265
 8.1.3 Central Limit Theorem 266
 8.2 Global Methods for the Spot Volatility 273
 8.3 Volatility of Volatility ... 274
 8.4 Leverage: The Covariation between X and c 279
 8.5 Optimal Estimation of a Function of Volatility 284
 8.6 State-Dependent Volatility 289
 8.7 Spot Volatility and Microstructure Noise 293
 8.8 References .. 296

9 Volatility and Irregularly Spaced Observations 299
 9.1 Irregular Observation Times: The One-Dimensional Case 301
 9.1.1 About Irregular Sampling Schemes 302
 9.1.2 Estimation of the Integrated Volatility and Other
 Integrated Volatility Powers 305
 9.1.3 Irregular Observation Schemes: Time Changes 309
 9.2 The Multivariate Case: Non-synchronous Observations 313
 9.2.1 The Epps Effect .. 314
 9.2.2 The Hayashi-Yoshida Method 315
 9.2.3 Other Methods and Extensions 320
IV Jumps

10 Testing for Jumps 329

10.1 Introduction 331

10.2 Relative Sizes of the Jump and Continuous Parts and Testing for Jumps 334

10.2.1 The Mathematical Tools 334

10.2.2 A “Linear” Test for Jumps 336

10.2.3 A “Ratio” Test for Jumps 340

10.2.4 Relative Sizes of the Jump and Brownian Parts 342

10.2.5 Testing the Null instead of 352

10.3 A Symmetrical Test for Jumps 353

10.3.1 The Test Statistics Based on Power Variations 353

10.3.2 Some Central Limit Theorems 356

10.3.3 Testing the Null Hypothesis of No Jump 360

10.3.4 Testing the Null Hypothesis of Presence of Jumps 362

10.3.5 Comparison of the Tests 366

10.4 Detection of Jumps 368

10.4.1 Mathematical Background 369

10.4.2 A Test for Jumps 372

10.4.3 Finding the Jumps: The Finite Activity Case 373

10.4.4 The General Case 376

10.5 Detection of Volatility Jumps 378

10.6 Microstructure Noise and Jumps 381

10.6.1 A Noise-Robust Jump Test Statistic 382

10.6.2 The Central Limit Theorems for the Noise-Robust Jump Test 384

10.6.3 Testing the Null Hypothesis of No Jump in the Presence of Noise 386

10.6.4 Testing the Null Hypothesis of Presence of Jumps in the Presence of Noise 388

10.7 References 390

11 Finer Analysis of Jumps: The Degree of Jump Activity 393

11.1 The Model Assumptions 395

11.2 Estimation of the First BG Index and of the Related Intensity 399
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.1</td>
<td>Construction of the Estimators</td>
<td>399</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Asymptotic Properties</td>
<td>404</td>
</tr>
<tr>
<td>11.2.3</td>
<td>How Far from Asymptotic Optimality?</td>
<td>407</td>
</tr>
<tr>
<td>11.2.4</td>
<td>The Truly Non-symmetric Case</td>
<td>415</td>
</tr>
<tr>
<td>11.3</td>
<td>Successive BG Indices</td>
<td>419</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Preliminaries</td>
<td>420</td>
</tr>
<tr>
<td>11.3.2</td>
<td>First Estimators</td>
<td>422</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Improved Estimators</td>
<td>424</td>
</tr>
<tr>
<td>11.4</td>
<td>References</td>
<td>427</td>
</tr>
<tr>
<td>12</td>
<td>Finite or Infinite Activity for Jumps?</td>
<td>429</td>
</tr>
<tr>
<td>12.1</td>
<td>When the Null Hypothesis Is Finite Jump Activity</td>
<td>430</td>
</tr>
<tr>
<td>12.2</td>
<td>When the Null Hypothesis Is Infinite Jump Activity</td>
<td>437</td>
</tr>
<tr>
<td>12.3</td>
<td>References</td>
<td>439</td>
</tr>
<tr>
<td>13</td>
<td>Is Brownian Motion Really Necessary?</td>
<td>441</td>
</tr>
<tr>
<td>13.1</td>
<td>Tests for the Null Hypothesis That the Brownian Is Present</td>
<td>443</td>
</tr>
<tr>
<td>13.2</td>
<td>Tests for the Null Hypothesis That the Brownian Is Absent</td>
<td>446</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Adding a Fictitious Brownian</td>
<td>448</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Tests Based on Power Variations</td>
<td>449</td>
</tr>
<tr>
<td>13.3</td>
<td>References</td>
<td>451</td>
</tr>
<tr>
<td>14</td>
<td>Co-jumps</td>
<td>453</td>
</tr>
<tr>
<td>14.1</td>
<td>Co-jumps for the Underlying Process</td>
<td>453</td>
</tr>
<tr>
<td>14.1.1</td>
<td>The Setting</td>
<td>453</td>
</tr>
<tr>
<td>14.1.2</td>
<td>Testing for Common Jumps</td>
<td>456</td>
</tr>
<tr>
<td>14.1.3</td>
<td>Testing for Disjoint Jumps</td>
<td>459</td>
</tr>
<tr>
<td>14.1.4</td>
<td>Some Open Problems</td>
<td>463</td>
</tr>
<tr>
<td>14.2</td>
<td>Co-jumps between the Process and Its Volatility</td>
<td>464</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Limit Theorems for Functionals of Jumps and Volatility</td>
<td>466</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Testing the Null Hypothesis of No Co-jump</td>
<td>469</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Testing the Null Hypothesis of the Presence of Co-jumps</td>
<td>473</td>
</tr>
<tr>
<td>14.3</td>
<td>References</td>
<td>474</td>
</tr>
<tr>
<td>A</td>
<td>Asymptotic Results for Power Variations</td>
<td>477</td>
</tr>
<tr>
<td>A.1</td>
<td>Setting and Assumptions</td>
<td>477</td>
</tr>
<tr>
<td>A.2</td>
<td>Laws of Large Numbers</td>
<td>480</td>
</tr>
<tr>
<td>A.2.1</td>
<td>LLNs for Power Variations and Related Functionals</td>
<td>480</td>
</tr>
<tr>
<td>A.2.2</td>
<td>LLNs for the Integrated Volatility</td>
<td>484</td>
</tr>
<tr>
<td>A.2.3</td>
<td>LLNs for Estimating the Spot Volatility</td>
<td>485</td>
</tr>
<tr>
<td>A.3</td>
<td>Central Limit Theorems</td>
<td>488</td>
</tr>
<tr>
<td>A.3.1</td>
<td>CLTs for the Processes $B(f, \Delta_n)$ and $\overline{B}(f, \Delta_n)$</td>
<td>488</td>
</tr>
<tr>
<td>A.3.2</td>
<td>A Degenerate Case</td>
<td>490</td>
</tr>
<tr>
<td>A.3.3</td>
<td>CLTs for the Processes $B'(f, \Delta_n)$ and $\overline{B}'(f, \Delta_n)$</td>
<td>492</td>
</tr>
<tr>
<td>A.3.4</td>
<td>CLTs for the Quadratic Variation</td>
<td>495</td>
</tr>
<tr>
<td>A.4</td>
<td>Noise and Pre-averaging: Limit Theorems</td>
<td>496</td>
</tr>
<tr>
<td>A.4.1</td>
<td>Assumptions on Noise and Pre-averaging Schemes</td>
<td>497</td>
</tr>
<tr>
<td>A.4.2</td>
<td>LLNs for Noise</td>
<td>498</td>
</tr>
<tr>
<td>A.4.3</td>
<td>CLTs for Noise</td>
<td>500</td>
</tr>
<tr>
<td>A.5</td>
<td>Localization and Strengthened Assumptions</td>
<td>502</td>
</tr>
</tbody>
</table>

B Miscellaneous Proofs

B.1	Proofs for Chapter 5	507
B.1.1	Proofs for Sections 5.2 and 5.3	507
B.1.2	Proofs for Section 5.5	513
B.1.3	Proof of Theorem 5.25	520
B.2	Proofs for Chapter 8	531
B.2.1	Preliminaries	531
B.2.2	Estimates for the Increments of X and c	535
B.2.3	Estimates for the Spot Volatility Estimators	538
B.2.4	A Key Decomposition for Theorems 8.11 and 8.14	540
B.2.5	Proof of Theorems 8.11 and 8.14 and Remark 8.15	547
B.2.6	Proof of Theorems 8.12 and 8.17	553
B.2.7	Proof of Theorem 8.20	554
B.3	Proofs for Chapter 10	557
B.3.1	Proof of Theorem 10.12	557
B.3.2	Proofs for Section 10.3	564
B.3.3	Proofs for Section 10.4	568
B.3.4	Proofs for Section 10.5	573
B.4	Limit Theorems for the Jumps of an Itô Semimartingale	578
B.5	A Comparison Between Jumps and Increments	583
B.6	Proofs for Chapter 11	593
B.6.1	Proof of Theorems 11.11, 11.12, 11.18, 11.19, and Remark 11.14	593
B.6.2	Proof of Theorem 11.21	597
B.6.3	Proof of Theorem 11.23	600