Yuri S. Popkov

Mathematical Demoeconomy

Integrating Demographic and Economic Approaches

DE GRUYTER
Contents

Preface —— v

Part I General principles of demoeconomics

1 The population-economy system —— 3
 1.1 General characteristics of the population-economy system —— 3
 1.2 Mathematical modeling of the PE system: specific features —— 7
 1.2.1 Principles of mathematical modeling —— 8
 1.2.2 Nonlinear processes —— 9
 1.2.3 Temporal hierarchy —— 9
 1.2.4 Spatial hierarchy —— 10
 1.3 Forecasting of demoeconomic development —— 11

2 Probabilistic techniques in demoeconomic forecasting —— 16
 2.1 Uncertainty in the PE system —— 16
 2.2 Demoeconomic forecasting: the structure of probabilistic technique —— 19

Part II Foundations of spatial demography

3 The population system —— 25
 3.1 Key notions —— 25
 3.2 State indicators of population —— 29
 3.3 States evolution in a demographic process: general modeling principles —— 32
 3.3.1 Structuring based on sex and space —— 33
 3.3.2 Structuring based on sex, age and space —— 34

4 Demographic characteristics of fertility —— 36
 4.1 Phenomenology of newborns distribution by maternal ages —— 36
 4.2 Entropy model of age-specific fertility rate —— 39
 4.3 Iterative method of age-specific fertility rate recovery —— 44
 4.4 Dynamics of fertility rates —— 49
 4.4.1 Dynamic model of total fertility rate —— 49
 4.4.2 Dynamic model of age-specific fertility rate —— 57

5 Demographic characteristics of mortality —— 60
 5.1 Phenomenology of mortality —— 60
 5.2 Entropy model of sex-age distribution of mortality rate —— 62
5.2.1 Model construction — 62
5.2.2 Model analysis — 65
5.3 Parameter identification for the entropy model of mortality based on real data — 67
5.4 Entropy decomposition of age-specific distribution of mortality by classes of diseases — 76
5.5 Dynamic model of total mortality rate — 82

6 Demographic characteristics of migration — 87
6.1 General phenomenology of migration — 88
6.2 Entropy-optimal distribution of migration flows — 92
6.3 Optimality conditions for entropy models of migration — 104
6.4 Parametric properties in entropy models of migration — 108
6.4.1 Parametric properties of the B-model with complete consumption of resources — 112
6.4.2 An example of analyzing the parametric properties of the B-model of migration flows — 116
6.4.3 Parametric properties of the F-model with complete consumption of resources — 126

7 Macrosystem models of population dynamics — 132
7.1 Dynamics of isolated population — 132
7.1.1 Deterministic functions of fertility and mortality — 132
7.1.2 Random functions of fertility and mortality — 139
7.2 Macrosystem dynamic model with linear reproduction of population and balanced emigration — 142
7.2.1 Stationary states — 144
7.2.2 Stability of stationary states — 147
7.3 Stable stationary states of spatial distribution of population: an example of scenario forecasting — 153
7.4 General macrosystem model of population size dynamics — 157
7.4.1 Stationary states — 161
7.4.2 Stability of stationary states — 162

Part III Foundations of spatial economics

8 Modeling economics — 169
8.1 Political economy, micro- and macroeconomics, mathematical economics: objects and goals — 170
8.2 Behavioral models for economic agents — 176
8.2.1 Models of rational behavior — 177
14.1.1 The systems character of demoeconomic processes — 300
14.1.2 The individual and the collective — 301
14.1.3 Time scales — 301
14.2 Macrosystems concept of demoeconomics: model representation — 303
14.3 The Monte Carlo method in probabilistic macrosystem modeling of demoeconomic processes — 305

15 One-sector macrosystem demoeconomic model (MSDEM) — 310
15.1 Structure and basic variables of the model — 310
15.2 Equations of one-sector MSDEM — 313
15.2.1 The block IsEM — 313
15.2.2 The block MSDM — 316
15.3 An example of one-sector MSDEM — 320
15.3.1 Equations of the model — 321
15.3.2 Analytic treatment of the simplified one-sector MSDEM — 324
15.3.3 Computer experiments with the one-sector MSDEM — 327
15.3.4 Analytic treatment and computer experiments with the one-sector PMSDEM — 333

16 Macrosystem demoeconomic model with regional localization of sectors (branches) Ns ~ MSDEM — 339
16.1 Structure and basic variables of the model — 339
16.2 Equations of Ns ~ MSDEM with resource exchange on regional markets — 344
16.2.1 The block NsEM — 344
16.2.2 The block MSDM — 349
16.2.3 The block TRM — 351
16.3 An example of analytic treatment of Ns ~ MSDEM — 352
16.3.1 Equations of the model — 352
16.3.2 Stationary states — 354
16.4 Computer analysis of Ns ~ MSDEM — 358
16.4.1 Equations of the model — 358

17 Macrosystem model of labour market — 371
17.1 Quantitative state indicators of labour market — 371
17.2 Structure and equations of the model — 373
17.3 Competition among cohorts — 375
17.3.1 Intrinsic competitive ability — 376
17.3.2 The comparative competitive ability — 379
17.3.3 Labour force requirement and supply of labour force — 380
17.4 Identification algorithm for model parameters — 381
17.5 Identification of model parameters based on real data — 383

18 Probabilistic macrosystem demoeconomic model — 392
18.1 Aggregated structure of PMSDEM and its spatiotemporal characteristics — 392
18.2 Realization of PMSDEM: the Monte Carlo methods — 397
18.2.1 Average computing — 397
18.2.2 Random search — 398
18.2.3 Generation of random variables with given properties — 399
18.3 The POPULATION block — 400
18.3.1 Classification of population — 400
18.3.2 Biological reproduction of population (the R module) — 402
18.3.3 Migration (the M module) — 405
18.3.4 Dynamics of population (the DP module) — 411
18.3.5 Outputs of the POPULATION block — 411
18.4 The economy block — 412
18.4.1 Production economy (the PE module) — 412
18.4.2 Exchange of products (the Ex module) — 416
18.4.3 Prices (the Pr module) — 418
18.4.4 The output variable of the ECONOMY block — 420
18.5 The interaction block — 421
18.5.1 Migration (the MPP module) — 421
18.5.2 Fertility (the TFR module and the ASFR module) — 425
18.5.3 Mortality (the TMR module and the ASMR module) — 431

Part V Mathematical appendices

A Some theorems of implicit functions — 441
A.1 Introduction — 441
A.2 Local properties — 441
A.2.1 Existence and continuity — 441
A.2.2 Homogeneous forms and posinomials — 443
A.2.3 Differentiability — 447
A.3 Global properties — 450
A.3.1 Existence. — 450
A.3.2 Differentiability — 453

B Estimating the local Lipschitz Constant of the entropy operator $B_{v,q}$ — 454
B.1 Introduction — 454
B.2 Definitions — 454
B.2.1 The operator $B_{v,q}$ — 454
B.2.2 The normal operator $B^0_{v,q}$ — 455
B.2.3 The relation between $B_{v,q}$ and $B^0_{v,q}$ — 455
B.3 Properties of the entropy operator $B^0_{v,q}$ — 457
B.3.1 Existence and uniqueness — 457
B.3.2 Majorant construction — 459
B.4 Estimating the norm of derivative of the entropy operator $B^0_{v,q}$ — 461
B.5 Estimating the spectral norm of the matrix $[I^0_\lambda]^{-1}$ — 464

C Estimating the local Lipschitz Constant of the entropy operator $F_{v,q}$ — 467
C.1 Definitions — 467
C.2 Properties of the normal entropy operator $F^0_{v,q}$ — 468
C.3 Majorants of the operator $F^0_{v,q}$ — 470
C.4 Estimate I^F — 473

D Zero-order multiplicative algorithms for positive solutions to nonlinear equations — 475
D.1 Introduction — 475
D.2 Auxiliary estimates — 476
D.3 Convergence analysis by continuous analogs of iterative algorithms — 479
D.4 Convergence of zero-order multiplicative algorithms with m-active variables: nonlinear equations — 480
D.5 Convergence of zero-order multiplicative algorithms with m-active variables: convex programming — 482

E Multiplicative algorithms for positive solutions to entropy-quadratic programming problems — 489
E.1 Problem statement — 489
E.2 Optimality conditions — 490
E.3 Multiplicative algorithm — 492

Bibliography — 493

Index — 498