Imke Mattik

Integrated Scheduling of Continuous Casters and Hot Strip Mills

A Block Planning Application for the Steel Industry

Foreword by Prof. Dr. Hans-Otto Günther

Springer Gabler
Contents

Foreword V

Preface VII

List of Figures XIII

List of Tables XV

List of Abbreviations and Acronyms XVII

1 Introduction 1

1.1 Motivation 1

1.2 Dissertation outline 3

2 Production planning and steel industry 5

2.1 Supply chain management and production planning 5

2.1.1 The concept of supply chain management 5

2.1.2 Hierarchical structures in production planning 7

2.1.3 Advanced planning systems 9

2.2 Production planning and detailed scheduling 11

2.2.1 Production planning and scheduling process 11

2.2.2 Relevant planning characteristics 13

2.2.3 Production planning principles 15

2.2.4 Quantitative models of lot sizing and scheduling 16

2.2.5 Sequencing rules 22

2.3 Steel production 22

2.3.1 Industry characteristics 22
2.3.2 Current challenges 25
2.3.3 Production setup and processes 30

3 Scheduling concepts with focus on the steel industry 34

3.1 Planning challenges in the steel industry 34
3.1.1 Equipment specific challenges 34
3.1.2 Product portfolio challenges 35
3.1.3 Demand and scheduling characteristics 36
3.1.4 Requirements for quantitative scheduling optimization 37
3.2 Review of batching and scheduling literature with steel industry focus 39
3.2.1 Classification of batching and scheduling models with steel industry focus 39
3.2.2 Review of individual publications 44
3.3 Integrated and separate batching and scheduling 52
3.4 Continuous and discrete representation of time 53
3.5 Block planning principle 54

4 Scheduling of CCs and HSMs in the steel industry 57

4.1 Problem description 57
4.2 Decomposition approach 60
4.3 Model formulations 64
4.3.1 Push-Principle 64
4.3.2 Pull-principle 70

5 Computational Experiments 77
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Experimental design</td>
<td>77</td>
</tr>
<tr>
<td>5.2</td>
<td>Results and discussion</td>
<td>82</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Results for the push principle</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>Results for the pull-principle</td>
<td>88</td>
</tr>
<tr>
<td>5.4</td>
<td>Comparative analysis of the push and pull-principles</td>
<td>92</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Maximum and average waiting times</td>
<td>93</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Total production and setup times</td>
<td>97</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Analysis of production stops</td>
<td>104</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Computational effort</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
<td>107</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Appendix 1: Discrete time based model formulation</td>
<td>111</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>113</td>
</tr>
</tbody>
</table>