TABLE OF CONTENTS

PREFACE xxii

CHAPTER 1
Introduction 1
1.1 The Origins of Operations Research 1
1.2 The Nature of Operations Research 2
1.3 The Rise of Analytics Together with Operations Research 3
1.4 The Impact of Operations Research 5
1.5 Algorithms and OR Courseware 7
Selected References 9
Problems 9

CHAPTER 2
Overview of the Operations Research Modeling Approach 10
2.1 Defining the Problem and Gathering Data 10
2.2 Formulating a Mathematical Model 13
2.3 Deriving Solutions from the Model 15
2.4 Testing the Model 18
2.5 Preparing to Apply the Model 19
2.6 Implementation 20
2.7 Conclusions 21
Selected References 21
Problems 23

CHAPTER 3
Introduction to Linear Programming 25
3.1 Prototype Example 26
3.2 The Linear Programming Model 32
3.3 Assumptions of Linear Programming 38
3.4 Additional Examples 44
3.5 Formulating and Solving Linear Programming Models on a Spreadsheet 62
3.6 Formulating Very Large Linear Programming Models 71
3.7 Conclusions 79
Selected References 79
Learning Aids for This Chapter on Our Website 80
Problems 81
Case 3.1 Auto Assembly 90
Previews of Added Cases on Our Website 92
Case 3.2 Cutting Cafeteria Costs 92
Case 3.3 Staffing a Call Center 92
Case 3.4 Promoting a Breakfast Cereal 92
CHAPTER 4
Solving Linear Programming Problems: The Simplex Method 93
4.1 The Essence of the Simplex Method 93
4.2 Setting Up the Simplex Method 98
4.3 The Algebra of the Simplex Method 101
4.4 The Simplex Method in Tabular Form 107
4.5 Tie Breaking in the Simplex Method 112
4.6 Adapting to Other Model Forms 115
4.7 Postoptimality Analysis 133
4.8 Computer Implementation 141
4.9 The Interior-Point Approach to Solving Linear Programming Problems 143
4.10 Conclusions 147
Appendix 4.1 An Introduction to Using LINDO and LINGO 147
Selected References 151
Learning Aids for This Chapter on Our Website 151
Problems 152
Case 4.1 Fabrics and Fall Fashions 160
Previews of Added Cases on Our Website 162
Case 4.2 New Frontiers 162
Case 4.3 Assigning Students to Schools 162

CHAPTER 5
The Theory of the Simplex Method 163
5.1 Foundations of the Simplex Method 163
5.2 The Simplex Method in Matrix Form 174
5.3 A Fundamental Insight 183
5.4 The Revised Simplex Method 186
5.5 Conclusions 189
Selected References 189
Learning Aids for This Chapter on Our Website 190
Problems 190

CHAPTER 6
Duality Theory 197
6.1 The Essence of Duality Theory 197
6.2 Economic Interpretation of Duality 205
6.3 Primal-Dual Relationships 208
6.4 Adapting to Other Primal Forms 213
6.5 The Role of Duality Theory in Sensitivity Analysis 217
6.6 Conclusions 220
Selected References 220
Learning Aids for This Chapter on Our Website 220
Problems 221

CHAPTER 7
Linear Programming under Uncertainty 225
7.1 The Essence of Sensitivity Analysis 226
7.2 Applying Sensitivity Analysis 233
7.3 Performing Sensitivity Analysis on a Spreadsheet 250
7.4 Robust Optimization 264
7.5 Chance Constraints 268
7.6 Stochastic Programming with Recourse 271
7.7 Conclusions 276
Selected References 276
Learning Aids for This Chapter on Our Website 277
Problems 277
Case 7.1 Controlling Air Pollution 288
Previews of Added Cases on Our Website 289
Case 7.2 Farm Management 289
Case 7.3 Assigning Students to Schools, Revisited 289
Case 7.4 Writing a Nontechnical Memo 289

CHAPTER 8
Other Algorithms for Linear Programming 290
8.1 The Dual Simplex Method 290
8.2 Parametric Linear Programming 294
8.3 The Upper Bound Technique 299
8.4 An Interior-Point Algorithm 301
8.5 Conclusions 312
Selected References 313
Learning Aids for This Chapter on Our Website 313
Problems 314

CHAPTER 9
The Transportation and Assignment Problems 318
9.1 The Transportation Problem 319
9.2 A Streamlined Simplex Method for the Transportation Problem 333
9.3 The Assignment Problem 348
9.4 A Special Algorithm for the Assignment Problem 356
9.5 Conclusions 360
Selected References 361
Learning Aids for This Chapter on Our Website 361
Problems 362
Case 9.1 Shipping Wood to Market 370
Previews of Added Cases on Our Website 371
Case 9.2 Continuation of the Texago Case Study 371
Case 9.3 Project Pickings 371

CHAPTER 10
Network Optimization Models 372
10.1 Prototype Example 373
10.2 The Terminology of Networks 374
10.3 The Shortest-Path Problem 377
10.4 The Minimum Spanning Tree Problem 382
10.5 The Maximum Flow Problem 387
10.6 The Minimum Cost Flow Problem 395
10.7 The Network Simplex Method 403
10.8 A Network Model for Optimizing a Project's Time-Cost Trade-Off 413
10.9 Conclusions 424
Selected References 425
Learning Aids for This Chapter on Our Website 425
CONTENTS

Problems 426
Case 10.1 Money in Motion 434
Previews of Added Cases on Our Website 437
 Case 10.2 Aiding Allies 437
 Case 10.3 Steps to Success 437

CHAPTER 11
Dynamic Programming 438
 11.1 A Prototype Example for Dynamic Programming 438
 11.2 Characteristics of Dynamic Programming Problems 443
 11.3 Deterministic Dynamic Programming 445
 11.4 Probabilistic Dynamic Programming 462
 11.5 Conclusions 468
Selected References 468
Learning Aids for This Chapter on Our Website 468
Problems 469

CHAPTER 12
Integer Programming 474
 12.1 Prototype Example 475
 12.2 Some BIP Applications 478
 12.3 Innovative Uses of Binary Variables in Model Formulation 483
 12.4 Some Formulation Examples 489
 12.5 Some Perspectives on Solving Integer Programming Problems 497
 12.6 The Branch-and-Bound Technique and Its Application to Binary
 Integer Programming 501
 12.7 A Branch-and-Bound Algorithm for Mixed Integer
 Programming 513
 12.8 The Branch-and-Cut Approach to Solving BIP Problems 519
 12.9 The Incorporation of Constraint Programming 525
 12.10 Conclusions 531
Selected References 532
Learning Aids for This Chapter on Our Website 533
Problems 534
Case 12.1 Capacity Concerns 543
Previews of Added Cases on Our Website 545
 Case 12.2 Assigning Art 545
 Case 12.3 Stocking Sets 545
 Case 12.4 Assigning Students to Schools, Revisited Again 546

CHAPTER 13
Nonlinear Programming 547
 13.1 Sample Applications 548
 13.2 Graphical Illustration of Nonlinear Programming Problems 552
 13.3 Types of Nonlinear Programming Problems 556
 13.4 One-Variable Unconstrained Optimization 562
 13.5 Multivariable Unconstrained Optimization 567
 13.6 The Karush-Kuhn-Tucker (KKT) Conditions for Constrained Optimization 573
 13.7 Quadratic Programming 577
CHAPTER 17
Queueing Theory 731
17.1 Prototype Example 732
17.2 Basic Structure of Queueing Models 732
17.3 Examples of Real Queueing Systems 737
17.4 The Role of the Exponential Distribution 739
17.5 The Birth-and-Death Process 745
17.6 Queueing Models Based on the Birth-and-Death Process 750
17.7 Queueing Models Involving Nonexponential Distributions 762
17.8 Priority-Discipline Queueing Models 770
17.9 Queueing Networks 775
17.10 The Application of Queueing Theory 779
17.11 Conclusions 784
Selected References 784
Learning Aids for This Chapter on Our Website 785
Problems 786
Case 17.1 Reducing In-Process Inventory 798
Preview of an Added Case on Our Website 799
Case 17.2 Queueing Quandary 799

CHAPTER 18
Inventory Theory 800
18.1 Examples 801
18.2 Components of Inventory Models 803
18.3 Deterministic Continuous-Review Models 805
18.4 A Deterministic Periodic-Review Model 815
18.5 Deterministic Multiechelon Inventory Models for Supply
Chain Management 820
18.6 A Stochastic Continuous-Review Model 838
18.7 A Stochastic Single-Period Model for Perishable Products 842
18.8 Revenue Management 854
18.9 Conclusions 862
Selected References 862
Learning Aids for This Chapter on Our Website 863
Problems 864
Case 18.1 Brushing Up on Inventory Control 874
Previews of Added Cases on Our Website 876
Case 18.2 TNT: Tackling Newsboy’s Teaching 876
Case 18.3 Jettisoning Surplus Stock 876

CHAPTER 19
Markov Decision Processes 877
19.1 A Prototype Example 878
19.2 A Model for Markov Decision Processes 880