Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>xi</td>
</tr>
</tbody>
</table>

1 An Introduction to the Major Asset Classes

1.1 Equities
1.1.1 Introduction
1.1.2 Pricing equities
1.1.3 Fundamental analysis
1.1.4 Technical analysis
1.1.5 Quantitative analysis
1.1.6 The equity risk premium and the pre-FOMC announcement drift
1.2 Commodities
1.2.1 Introduction
1.2.2 Hedging
1.2.3 Backwardation and contango
1.2.4 Investment in commodities
1.2.5 Commodity fundamentals
1.2.6 Super-cycles in commodity prices
1.2.7 Future regulation
1.3 Fixed Income
1.3.1 Introduction
1.3.2 Credit risk
1.3.3 The empirical pattern of yield curve moves
1.3.4 Modelling interest rate movements
1.3.5 Modelling the risks of default
1.4 Foreign Exchange
1.4.1 Introduction
1.4.2 How foreign exchange rates are quoted
Summary

2 Derivatives: Forwards, Futures and Swaps

2.1 Derivatives
Contents

2.2 Forward Contracts
 2.2.1 Definition 20
 2.2.2 Payoffs of forward contracts 21
 2.2.3 Forward price versus delivery price 23

2.3 Futures Contracts 24

2.4 Calculating Implied Forward Prices and Valuing Existing Forward Contracts 26
 2.4.1 Calculating implied forward prices on equities 26
 2.4.2 Calculating implied forward prices on foreign exchange rates 29
 2.4.3 Calculating implied forward prices on commodities 31
 2.4.4 Valuing existing forward contracts 34

2.5 Pricing Futures Contracts 34

2.6 Swaps 35
 2.6.1 Introduction 35
 2.6.2 Interest rate swaps 36
 2.6.3 Commodity swaps 41
 2.6.4 Commodity swap valuation 44
 2.6.5 Commodity swaps with variable notional and price 46
 2.6.6 Currency swaps 46
 2.6.7 Equity swaps 48
 Summary 49

3 Derivatives: Options and Related Strategies 51

3.1 Call Options 51
 3.1.1 Definition 51
 3.1.2 Examples 52
 3.1.3 Scenario analysis for the S&P 500 Index call option 53

3.2 Put Options 55
 3.2.1 Definition 55
 3.2.2 Examples 55
 3.2.3 Scenario analysis for put options 56

3.3 Boundary Conditions for Call and Put Options Prices 58
 3.3.1 Introduction and basic notation 58
 3.3.2 A call option cannot be worth more than the price of the underlying asset 59
 3.3.3 The price of a put option cannot be higher than the present value of the strike price, K 60
 3.3.4 Lower boundaries for call options on non-dividend paying stocks 60
 3.3.5 Lower boundaries for put options on non-dividend paying stocks 61

3.4 Put–Call Parity 61

3.5 Swaptions 63

3.6 Options Strategies 64
 3.6.1 Introduction to option strategies 64
 3.6.2 Option spreads 65
 3.6.3 Directional strategies using vertical spreads 65
 3.6.4 Risk reversal and collars 69
 3.6.5 Volatility strategies with puts and calls 70
 Summary 76
4 Binomial Option Pricing

4.1 One-Period Binomial Tree: Replication Approach 77
4.2 Risk-Neutral Valuation 83
 4.2.1 Introduction to risk-neutral valuation 83
 4.2.2 An alternative way to think of the option price 84
 4.2.3 Risk-neutral probabilities 85
4.3 Two-Period Binomial Tree: Valuing Back Down the Tree 85
4.4 The Binomial Tree: A Generalization 89
4.5 Early Exercise and American Options 90
4.6 Volatility Calibration 90
 Summary 92

5 The Fundamentals of Option Pricing 93

5.1 Intrinsic Value and Time Value of an Option 93
 5.1.1 Introduction and definitions 93
 5.1.2 Jensen’s inequality 94
 5.1.3 Time value of an option 95
5.2 What is Volatility and Why Does it Matter? 95
5.3 Measurement of Realized Volatility and Correlation 97
5.4 Option Pricing in the Black–Scholes Framework 99
5.5 The Option Delta and the Replication of the Option Payoff 100
5.6 Option Replication 102
5.7 Option Replication, Risk-Neutral Valuation and Delta Hedging Revisited 104
5.8 Options on Dividend Paying Assets 106
5.9 Options on Futures: The Black Model 107
5.10 Monte Carlo Pricing 108
 5.10.1 Introduction to the Monte Carlo technique 108
 5.10.2 Generation of a Monte Carlo path 110
5.11 Other Pricing Techniques 112
 5.11.1 Partial differential equation 112
 5.11.2 Binomial/trinomial tree pricing 113
5.12 Pricing Techniques Summary 113
5.13 The Excel Spreadsheet “Option Replication” 114
 5.13.1 Introduction and description of the spreadsheet 114
 5.13.2 Why the replication is not perfect 117
 Summary 117

6 Implied Volatility and the Greeks 121

6.1 Implied Volatility 121
6.2 The Greeks 123
6.3 Delta and its Dynamics 123
 6.3.1 Definition and calculation 123
 6.3.2 The dynamics of delta 125
6.4 Gamma and its Dynamics 127
6.5 Vega and its Dynamics 132
6.6 Theta and its Dynamics 136
 6.6.1 Definition and calculation 136
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.2 Gamma versus theta: An equilibrium at the heart of option pricing</td>
<td>138</td>
</tr>
<tr>
<td>6.6.3 Dynamics of theta</td>
<td>140</td>
</tr>
<tr>
<td>6.7 Rho</td>
<td>142</td>
</tr>
<tr>
<td>6.8 Option Trading</td>
<td>143</td>
</tr>
<tr>
<td>6.8.1 Taking a position on implied volatility or on implied versus</td>
<td>143</td>
</tr>
<tr>
<td>realized volatility</td>
<td></td>
</tr>
<tr>
<td>6.8.2 Taking a position on the terminal payoff or re-hedging with a</td>
<td>144</td>
</tr>
<tr>
<td>certain frequency</td>
<td></td>
</tr>
<tr>
<td>6.9 Some Additional Remarks (in Q&A Format)</td>
<td>146</td>
</tr>
<tr>
<td>6.10 An Example of the Behaviour of Implied Volatility: EUR/USD Rate</td>
<td>147</td>
</tr>
<tr>
<td>and S&P 500 in 2010–2012</td>
<td>148</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
</tr>
<tr>
<td>7 Volatility Smile and the Greeks of Option Strategies</td>
<td>151</td>
</tr>
<tr>
<td>7.1 The Volatility Smile – Why is the Implied Volatility Not Flat</td>
<td>151</td>
</tr>
<tr>
<td>Across Different Strikes?</td>
<td></td>
</tr>
<tr>
<td>7.2 The “Sticky Delta” and “Sticky Strike” Approaches to Describing</td>
<td>153</td>
</tr>
<tr>
<td>Volatility Smile</td>
<td></td>
</tr>
<tr>
<td>7.3 The Volatility Term Structure – Why is the Implied Volatility Not</td>
<td>155</td>
</tr>
<tr>
<td>Flat Across Different Expiries?</td>
<td></td>
</tr>
<tr>
<td>7.4 The Volatility Surface – Combining Smile and Term Structure</td>
<td>156</td>
</tr>
<tr>
<td>7.5 Analysing the Greeks of Common Option Strategies</td>
<td>158</td>
</tr>
<tr>
<td>7.5.1 Vertical call or put spreads</td>
<td>158</td>
</tr>
<tr>
<td>7.5.2 Straddles and strangles</td>
<td>162</td>
</tr>
<tr>
<td>7.5.3 Risk reversals</td>
<td>163</td>
</tr>
<tr>
<td>7.5.4 Butterflies</td>
<td>165</td>
</tr>
<tr>
<td>7.5.5 Butterflies and volatility convexity</td>
<td>168</td>
</tr>
<tr>
<td>7.6 Some Additional Remarks on Straddles, Risk Reversals and Butterflies</td>
<td>170</td>
</tr>
<tr>
<td>7.7 Vega Hedging is Not Just Simply Offsetting Overall Vega Exposure</td>
<td>171</td>
</tr>
<tr>
<td>7.8 Hedging Volatility Risk: A Brief Introduction of the Vanna–Volga</td>
<td>172</td>
</tr>
<tr>
<td>Approach</td>
<td></td>
</tr>
<tr>
<td>7.9 The Volatility Smile – One Step Further</td>
<td>173</td>
</tr>
<tr>
<td>7.9.1 Introduction</td>
<td>173</td>
</tr>
<tr>
<td>7.9.2 Why and how to build a smile</td>
<td>173</td>
</tr>
<tr>
<td>7.9.3 Smile arbitrage</td>
<td>175</td>
</tr>
<tr>
<td>7.9.4 Volatility surface</td>
<td>176</td>
</tr>
<tr>
<td>7.9.5 Volatility time dependence in forward-based assets</td>
<td>176</td>
</tr>
<tr>
<td>7.9.6 Models of forward-based asset volatilities</td>
<td>178</td>
</tr>
<tr>
<td>7.9.7 Calibrating a model of forward-based asset volatilities</td>
<td>178</td>
</tr>
<tr>
<td>7.10 Pricing Exotic Options</td>
<td>178</td>
</tr>
<tr>
<td>7.11 Different Types of Volatility</td>
<td>179</td>
</tr>
<tr>
<td>7.11.1 Volatilities discussed so far</td>
<td>179</td>
</tr>
<tr>
<td>7.11.2 Forward-starting volatility</td>
<td>179</td>
</tr>
<tr>
<td>7.11.3 Local volatility</td>
<td>181</td>
</tr>
<tr>
<td>7.11.4 The limits of local volatility</td>
<td>181</td>
</tr>
<tr>
<td>7.11.5 Stochastic volatility models</td>
<td>182</td>
</tr>
<tr>
<td>7.11.6 Local-stochastic volatility models</td>
<td>183</td>
</tr>
<tr>
<td>Summary</td>
<td>184</td>
</tr>
</tbody>
</table>
8 Exotic Derivatives

8.1 Exotic Derivatives with Fixed Payoffs
8.1.1 European digital options
8.1.2 One touch and no touch options
8.1.3 Combinations of fixed payoff options

8.2 Other Common Exotic Derivatives
8.2.1 Barrier options
8.2.2 Asian options

8.3 European Digital Options: Pricing and Greeks
8.3.1 Pricing European digital options
8.3.2 The Greeks of a digital option
8.3.3 Incorporating volatility skew into the price of a digital option

8.4 Other Exotic Options: Pricing and Greeks
8.4.1 Pricing common barrier options
8.4.2 Greeks of common barrier options
8.4.3 Greeks of Asian options

Summary

9 Multi-Asset Derivatives

9.1 Basket Options
9.1.1 Basket option definition and Greeks
9.1.2 Cross-gamma and correlation revisited
9.2 Best-of and Worst-of Options
9.2.1 Best-of and worst-of definitions
9.2.2 The price and the Greeks of best-of and worst-of options
9.2.3 Best-of call
9.2.4 Best-of put
9.2.5 Worst-of call
9.2.6 Worst-of put
9.2.7 Cross-gamma and correlation revisited (again . . .)

9.3 Quanto Derivatives
9.4 “Compo” Derivatives

Summary

10 Structured Products

10.1 Definition
10.2 Common Features
10.3 Principal Protection
10.4 The Benefit to the Issuer
10.5 Redemption Amounts and Participation
10.6 Principal at Risk: Embedding a Short Option
10.7 More Complicated Payoffs
10.7.1 “Shark fin” notes
10.7.2 Reverse convertible notes
10.7.3 Range accrual notes
10.7.4 Auto-callable notes
Contents

10.8 Auto-Callable Note: Pricing and Risk Profile
10.8.1 Pricing 238
10.8.2 Risk profile 239
10.9 One Step Forward: The Worst-of Digital Note 240
10.10 A Real-Life Example of Structured Product 241
10.11 Liquidity and Exchange-Traded Notes (ETNs) 242
 Summary 243

Index 245