Risk Management and Simulation

Aparna Gupta
Contents

I Risk and Regulation

1 Defining Risk
 1.1 Types of Risk
 1.1.0.1 Pure Risk
 1.1.0.2 Speculative Risk
 1.1.1 Classification of Pure Risk
 1.1.2 Classification of Speculative Risk
 1.2 Getting Started with Modeling Risk
 1.2.1 Random Variable and Probability
 1.2.1.1 Summarizing Random Variables
 1.2.1.2 Several Random Variables and Correlation
 1.2.1.3 Conditional Probability
 1.2.2 Specific Models of Risk
 1.2.2.1 Normal Distribution
 1.2.2.2 Uniform Distribution
 1.2.2.3 Central Limit Theorem
 1.2.2.4 Binomial Distribution
 1.2.2.5 Poisson Distribution
 1.2.2.6 Exponential Distribution
 1.2.2.7 Weibull Distribution
 1.2.2.8 Lognormal Distribution
 1.2.2.9 Chi-Square Distribution
 1.2.2.10 Gamma Distribution
 1.3 MATLAB® Tools for Distributions
 1.4 Summary
 1.5 Questions and Exercises

2 Framework for Risk Management
 2.1 How to Handle Risk
 2.1.1 The Risk Management Framework
 2.1.2 Risk Preference vs. Risk Aversion
 2.1.2.1 Normative vs. Behavioral Choice
 2.1.3 Risk Measures
 2.1.4 Risk Management
 2.1.5 Elements of the Framework

4.5.1.1 Shuffling Procedure .. 109
4.5.2 Testing for Correctness of Distribution 110
4.5.2.1 The χ^2 Goodness of Fit Test 110
4.5.2.2 Kolmogorov-Smirnov Test 112
4.6 Validation of Model ... 113
4.6.1 Techniques for Model Verification 114
4.6.2 Techniques for Model Validation 115
4.7 Output Analysis .. 117
4.7.1 Descriptive Output Analysis 118
4.7.1.1 Designing Simulation Run by Properties of Estimators ... 119
4.7.2 Inferential Output Analysis 120
4.8 MATLAB Tools for Simulation 121
4.9 Summary .. 122
4.10 Questions and Exercises ... 122

5 Modeling Risk Evolving over Time 127
5.1 Stochastic Processes .. 127
5.2 Discrete-Time Evolution of Risk 128
 5.2.1 Discrete-Time Markov Chains 129
 5.2.2 Simple Random Walk 133
 5.2.3 Geometric Random Walk 135
5.3 Continuous-Time Evolution of Risk 136
 5.3.1 Continuous-Time Markov Chains 136
 5.3.2 Poisson Process ... 138
 5.3.3 Birth-Death Process 140
 5.3.4 Markov Process .. 141
 5.3.5 Gaussian Process ... 142
 5.3.6 Brownian Motion .. 144
 5.3.6.1 Approximating Brownian Motion by a Random Walk 145
 5.3.6.2 Convergence of Random Variables 146
 5.3.6.3 Properties of the Wiener Process 147
 5.3.7 Brownian Motion with Drift and Geometric Brownian Motion 149
 5.3.8 Additional Concepts for Stochastic Processes 150
5.4 Modeling Correlation .. 152
 5.4.1 Correlated Brownian Motion 152
 5.4.2 Copulas for Correlation 153
5.5 MATLAB Tools for Modeling Risk Evolving over Time 156
5.6 Summary .. 156
5.7 Questions and Exercises .. 157
6 Building and Solving Models of Risk
 6.1 Deterministic Financial Modeling ... 161
 6.2 Introducing Stochasticity in the Modeling 164
 6.3 Defining New Integrals .. 166
 6.3.1 Ito Integral ... 166
 6.3.2 Properties of the Ito Integral ... 168
 6.3.3 Chain Rule of Ito Calculus - The Ito Formula 170
 6.4 Analytical Solutions ... 171
 6.4.1 Solving the Model Exactly .. 172
 6.5 Solving Models Using Simulation .. 175
 6.5.1 The Euler Method for Solving Differential Equations 175
 6.5.2 Evaluating Simulation Solutions .. 180
 6.5.2.1 Convergence Properties of Solutions 181
 6.5.2.2 Error Analysis - Absolute Error Criterion 181
 6.5.2.3 Error Analysis - Mean Error Criterion 183
 6.5.3 Higher Order Methods ... 186
 6.5.3.1 Trapezoidal Method ... 186
 6.6 Estimating Parameters .. 188
 6.6.1 Geometric Brownian Motion .. 188
 6.6.2 Method of Maximum Likelihood .. 189
 6.6.3 Method of Quasi-Maximum Likelihood 191
 6.6.4 Method of Moments ... 192
 6.6.4.1 Ornstein-Uhlenbeck Process 192
 6.7 MATLAB Tools for Building and Solving Models of Risk 193
 6.8 Summary ... 194
 6.9 Questions and Exercises ... 194

III Risk Management

7 Managing Equity Market Risk ... 199
 7.1 Mitigating Equity Risk .. 200
 7.1.1 Portfolio Diversification .. 200
 7.1.1.1 Classical Mean-Variance Reward-Risk Measures 201
 7.1.1.2 Dynamic Investment Strategy 203
 7.1.2 Portfolio Optimization ... 205
 7.1.2.1 Optimum Risk-Return Trade-Off 205
 7.1.2.2 Simulation Analysis for Portfolio Decisions 208
 7.2 Transferring Equity Risk ... 210
 7.2.1 Option Pricing - Black-Scholes-Merton Approach 211
 7.2.1.1 Solving Black-Scholes Partial Differential Equation 216
 7.2.1.2 Estimating Option Price by Simulation 219
 7.2.1.3 Making Model Simpler - Binomial Tree Approach 220
Contents

7.2.2 Implied Volatility and Calibration for Risk-Neutral Pricing ... 223
7.2.3 Sensitivity to the Parameters .. 225
7.2.4 Exotic Options ... 229
7.2.5 American Options .. 233
7.2.6 Generalizing the Models in Black-Scholes-Merton ... 235
 7.2.6.1 Constant Elasticity of Variance (CEV) Model ... 236
 7.2.6.2 Model for Several Correlated Stocks ... 237
 7.2.6.3 Extensions in Option Pricing - Stochastic Volatility 239
 7.2.6.4 Large Sudden Changes in Prices - Jump Diffusion Model 244

7.3 Equity Hedging Strategies ... 246
 7.3.1 Static Hedging Strategies .. 247
 7.3.2 Optimal Hedge Problem .. 253
 7.3.3 Dynamic Hedging Strategies ... 254

7.4 MATLAB Tools for Equity and Portfolios .. 258

7.5 Summary .. 258
7.6 Questions and Exercises ... 259

8 Managing Interest Rates and Other Market Risks .. 265

8.1 Pricing Fixed Income Instruments .. 266
 8.1.1 Bond Pricing .. 266
 8.1.2 Stochastic Interest Rate Models .. 270
 8.1.2.1 Short Rate Models ... 270
 8.1.2.2 Multi-Factor Interest Rate Models .. 276
 8.1.2.3 Other Fixed-Income Instruments .. 277
 8.1.3 Simulation of Interest Rate Models .. 279

8.2 Interest-Rate Risk Management ... 280
 8.2.1 Interest-Rate Sensitivity in Fixed-Income Instruments 281
 8.2.1.1 Bond Portfolio Immunization .. 285
 8.2.2 Interest-Rate Derivatives ... 287
 8.2.3 Interest-Rate Hedging Strategies .. 291

8.3 Managing Commodities Risk ... 294
 8.3.1 Modeling Commodity Spot Prices ... 297
 8.3.1.1 Energy, Electricity, and Weather Risk .. 299
 8.3.2 Management of Commodity Risk ... 301
 8.3.2.1 Commodity Futures and Other Derivatives 304

8.4 Managing Foreign Exchange Risk .. 306
 8.4.1 Models for Spot and Forward Exchange Rates .. 309
 8.4.2 Currency Derivatives .. 310

8.5 Value-at-Risk and Stress Testing for Market Risk Management 312

8.6 MATLAB Tools for Fixed Income, Commodities, and Exchange Rates 317

8.7 Summary .. 318
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>Questions and Exercises</td>
<td>318</td>
</tr>
<tr>
<td>9</td>
<td>Credit Risk Management</td>
<td>325</td>
</tr>
<tr>
<td>9.1</td>
<td>Retail Credit Risk</td>
<td>326</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Measuring Retail Credit Risk</td>
<td>329</td>
</tr>
<tr>
<td>9.1.1.1</td>
<td>Credit Scoring Methods</td>
<td>332</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Retail Credit Risk Management</td>
<td>336</td>
</tr>
<tr>
<td>9.2</td>
<td>Commercial Credit Risk</td>
<td>340</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Credit Rating System</td>
<td>341</td>
</tr>
<tr>
<td>9.2.1.1</td>
<td>Risk Assessment by Credit Rating Migration</td>
<td>342</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Models for Credit Risk</td>
<td>347</td>
</tr>
<tr>
<td>9.2.2.1</td>
<td>Structural Model of Credit Risk</td>
<td>348</td>
</tr>
<tr>
<td>9.2.2.2</td>
<td>Reduced-Form Model of Credit Risk</td>
<td>350</td>
</tr>
<tr>
<td>9.3</td>
<td>Credit Risk Hedging Instruments</td>
<td>351</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Single-Name Credit Derivatives</td>
<td>354</td>
</tr>
<tr>
<td>9.3.1.1</td>
<td>Credit Default Swaps</td>
<td>355</td>
</tr>
<tr>
<td>9.3.1.2</td>
<td>Spread Options</td>
<td>357</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Multi-Name Credit Derivatives</td>
<td>357</td>
</tr>
<tr>
<td>9.3.2.1</td>
<td>Collateralized Debt Obligations</td>
<td>358</td>
</tr>
<tr>
<td>9.4</td>
<td>Portfolio Credit Risk Management</td>
<td>361</td>
</tr>
<tr>
<td>9.5</td>
<td>MATLAB Tools for Credit Risk</td>
<td>364</td>
</tr>
<tr>
<td>9.6</td>
<td>Summary</td>
<td>364</td>
</tr>
<tr>
<td>9.7</td>
<td>Questions and Exercises</td>
<td>365</td>
</tr>
<tr>
<td>10</td>
<td>Strategic, Business, and Operational Risk Management</td>
<td>371</td>
</tr>
<tr>
<td>10.1</td>
<td>Strategic Risk Management</td>
<td>371</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Objective of Strategic Risk Management</td>
<td>373</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Approaches for Strategic Risk Management</td>
<td>374</td>
</tr>
<tr>
<td>10.2</td>
<td>Business Risk Management</td>
<td>378</td>
</tr>
<tr>
<td>10.3</td>
<td>Asset-Liability Management</td>
<td>380</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Components of Asset-Liability Management</td>
<td>382</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Risk Management in ALM</td>
<td>385</td>
</tr>
<tr>
<td>10.3.2.1</td>
<td>Gap Analysis</td>
<td>385</td>
</tr>
<tr>
<td>10.3.2.2</td>
<td>Cumulative Gap Analysis</td>
<td>387</td>
</tr>
<tr>
<td>10.3.2.3</td>
<td>Duration Gap Analysis and Gap Convexity</td>
<td>387</td>
</tr>
<tr>
<td>10.3.2.4</td>
<td>Dynamic Gap and Long-Term Value at Risk Analysis</td>
<td>388</td>
</tr>
<tr>
<td>10.3.2.5</td>
<td>Scenario Analysis and Stress Testing</td>
<td>390</td>
</tr>
<tr>
<td>10.4</td>
<td>Operational Risk Management</td>
<td>391</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Assessing Operational Risk</td>
<td>393</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Managing Operational Risk</td>
<td>395</td>
</tr>
<tr>
<td>10.4.2.1</td>
<td>Risk Measures for Operational Risk</td>
<td>396</td>
</tr>
<tr>
<td>10.4.2.2</td>
<td>Operational Risk Management Strategy</td>
<td>397</td>
</tr>
<tr>
<td>10.5</td>
<td>Summary</td>
<td>399</td>
</tr>
<tr>
<td>10.6</td>
<td>Questions and Exercises</td>
<td>399</td>
</tr>
</tbody>
</table>
Contents

11 Risk Management Using Insurance 405

11.1 Basic Concepts of Insurance 407

11.2 Principle behind Insurance 409

11.2.1 Characteristics of Insurance and Insurable Risk 410

11.2.1.1 Law of Large Numbers 410

11.2.1.2 Requirement of Insurable Risk 413

11.3 Types of Insurance 414

11.3.1 Benefits and Cost of Insurance to Society 416

11.4 Risk Management Framework for Pure Risk 417

11.4.1 Pure Risk Evaluation 420

11.4.2 Risk Management Strategies for Pure Risk 423

11.4.3 Modeling Individual Mortality Risk 426

11.5 Risk Management by Insurers 427

11.5.1 Pricing, Investment, and Asset-Liability Management 427

11.5.2 Risk Management, Securitization, and Reinsurance 431

11.6 Summary 433

11.7 Questions and Exercises 434

IV Advanced Simulation

12 Advanced Simulation Topics 441

12.1 Variance Reduction Techniques 442

12.1.1 Control Variates 444

12.1.2 Antithetic Variables 447

12.1.3 Stratified Sampling 450

12.1.4 Latin Hypercube Sampling 453

12.1.5 Importance Sampling 454

12.2 Simulation-Based Optimization 455

12.2.1 Challenges of Simulation-Based Optimization 458

12.2.2 Simulation Optimization Methodologies 460

12.2.2.1 Gradient-Based Methods 463

12.2.2.2 Simulated Annealing 464

12.2.2.3 Tabu Search 466

12.2.2.4 Scatter Search 467

12.2.2.5 Evolutionary Strategies 467

12.2.2.6 Particle Swarm Optimization 469

12.3 MATLAB Tools for Variance Reduction and Optimization 471

12.4 Summary 471

12.5 Questions and Exercises 472

Bibliography 479

Index 485