Contents

List of Figures xiii

Preface xv

Acknowledgment xvii

1 Introduction 1

2 Deterministic Dynamical Systems and Stochastic Perturbations 7

2.1 Chapter overview 7

2.2 Deterministic dynamical systems 7

2.2.1 Ergodicity and Birkhoff individual ergodic theorem 9

2.2.2 Stationary (invariant) measures and the Frobenius–Perron operator for deterministic dynamical systems 10

2.3 Stochastic perturbations of deterministic dynamical systems 18

2.3.1 Stochastic perturbations of deterministic systems and invariant measures 19

2.3.2 A family of stochastic perturbations and invariant measures 22

2.3.3 Matrix representation of P_N 23

2.3.4 Stability and convergence 26

2.3.5 Examples 28

References 33

3 Random Dynamical Systems and Random Maps 35

3.1 Chapter overview 35

3.2 Random dynamical systems 35

3.3 Skew products 36

3.4 Random maps: Special structures of random dynamical systems 37

3.4.1 Random maps with constant probabilities 38

3.4.2 The Frobenius–Perron operator for random maps with constant probabilities 39

3.4.3 Properties of the Frobenius–Perron operator 39

3.4.4 Representation of the Frobenius–Perron operator 41

3.4.5 Existence of invariant measures for random maps with constant probabilities 43
3.4.6 Random maps of piecewise linear Markov transformations and the Frobenius–Perron operator 44

3.5 Necessary and sufficient conditions for the existence of invariant measures for a general class of random maps with constant probabilities 46

3.6 Support of invariant densities for random maps 53

3.7 Smoothness of density functions for random maps 62

3.8 Applications in finance 71

3.8.1 One period binomial model for stock option 73

3.8.2 The classical binomial interest rate models and bond prices 76

3.8.3 Random maps with constant probabilities as useful alternative models for classical binomial models 79

References 81

4 Position Dependent Random Maps 85

4.1 Chapter overview 85

4.2 Random maps with position dependent probabilities 86

4.2.1 The Frobenius–Perron operator 86

4.2.2 Properties of the Frobenius–Perron operator 87

4.2.3 Existence of invariant measures for position dependent random maps 89

4.2.3.1 Existence results of Góra and Boyarsky 89

4.2.3.2 Existence results of Bahsoun and Góra 90

4.2.3.3 Necessary and sufficient conditions for the existence of invariant measures for a general class of position dependent random maps 94

4.3 Markov switching position dependent random maps 94

4.4 Higher dimensional Markov switching position dependent random maps 100

4.4.1 Notations and review of some lemmas 100

4.4.2 The existence of absolutely continuous invariant measures of Markov switching position dependent random maps in \mathbb{R}^n 102

4.5 Approximation of invariant measures for position dependent random maps 107

4.5.1 Maximum entropy method for position dependent random maps 108

4.5.1.1 Convergence of the maximum entropy method for random map 112

4.5.2 Invariant measures of position dependent random maps via interpolation 113

4.6 Applications in finance 120

4.6.1 Generalized binomial model for stock prices 121

4.6.2 Call option prices using one period generalized binomial models 121
5 Random Evolutions as Random Dynamical Systems

5.1 Chapter overview
5.2 Multiplicative operator functionals (MOF)
5.3 Random evolutions
5.3.1 Definition and classification of random evolutions
5.3.2 Some examples of RE
5.3.3 Martingale characterization of random evolutions
5.3.4 Analogue of Dynkin's formula for RE
5.3.5 Boundary value problems for RE
5.4 Limit theorems for random evolutions
5.4.1 Weak convergence of random evolutions
5.4.2 Averaging of random evolutions
5.4.3 Diffusion approximation of random evolutions
5.4.4 Averaging of random evolutions in reducible phase space, merged random evolutions
5.4.5 Diffusion approximation of random evolutions in reducible phase space
5.4.6 Normal deviations of random evolutions
5.4.7 Rates of convergence in the limit theorems for RE

6 Averaging of the Geometric Markov Renewal Processes (GMRP)

6.1 Chapter overview
6.2 Introduction
6.3 Markov renewal processes and semi-Markov processes
6.4 The geometric Markov renewal processes (GMRP)
6.4.1 Jump semi-Markov random evolutions
6.4.2 Infinitesimal operators of the GMRP
6.4.3 Martingale property of the GMRP
6.5 Averaged geometric Markov renewal processes
6.5.1 Ergodic geometric Markov renewal processes
6.5.1.1 Average scheme
6.5.1.2 Martingale problem for the limit process \(\hat{S}_t \) in average scheme
6.5.1.3 Weak convergence of the processes \(S^T_t \) in an average scheme
6.5.1.4 Characterization of the limiting measure \(Q \) for \(Q_T \) as \(T \rightarrow \infty \)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>Rates of convergence in ergodic averaging scheme</td>
<td>175</td>
</tr>
<tr>
<td>6.7</td>
<td>Merged geometric Markov renewal processes</td>
<td>176</td>
</tr>
<tr>
<td>6.8</td>
<td>Security markets and option prices using generalized binomial models induced by random maps</td>
<td>177</td>
</tr>
<tr>
<td>6.9</td>
<td>Applications</td>
<td>177</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Two ergodic classes</td>
<td>177</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Algorithms of phase averaging with two ergodic classes</td>
<td>178</td>
</tr>
<tr>
<td>6.9.3</td>
<td>Merging of S^T_i in the case of two ergodic classes</td>
<td>178</td>
</tr>
<tr>
<td>6.9.4</td>
<td>Examples for two states ergodic GMRP</td>
<td>179</td>
</tr>
<tr>
<td>6.9.5</td>
<td>Examples for merged GMRP</td>
<td>179</td>
</tr>
<tr>
<td>7</td>
<td>Diffusion Approximations of the GMRP and Option Price Formulas</td>
<td>185</td>
</tr>
<tr>
<td>7.1</td>
<td>Chapter overview</td>
<td>185</td>
</tr>
<tr>
<td>7.2</td>
<td>Introduction</td>
<td>185</td>
</tr>
<tr>
<td>7.3</td>
<td>Diffusion approximation of the geometric Markov renewal process (GMRP)</td>
<td>186</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Ergodic diffusion approximation</td>
<td>186</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Merged diffusion approximation</td>
<td>188</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Diffusion approximation under double averaging</td>
<td>189</td>
</tr>
<tr>
<td>7.4</td>
<td>Proofs</td>
<td>189</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Diffusion approximation (DA)</td>
<td>189</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Martingale problem for the limiting problem $G_0(t)$ in DA</td>
<td>190</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Weak convergence of the processes $G_T(t)$ in DA</td>
<td>192</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Characterization of the limiting measure Q for Q_T as</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>$T \rightarrow +\infty$ in DA</td>
<td></td>
</tr>
<tr>
<td>7.4.5</td>
<td>Calculation of the quadratic variation for GMRP</td>
<td>193</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Rates of convergence for GMRP</td>
<td>194</td>
</tr>
<tr>
<td>7.5</td>
<td>Merged diffusion geometric Markov renewal process in the case of</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>two ergodic classes</td>
<td></td>
</tr>
<tr>
<td>7.5.1</td>
<td>Two ergodic classes</td>
<td>195</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Algorithms of phase averaging with two ergodic classes</td>
<td>195</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Merged diffusion approximation in the case of two ergodic classes</td>
<td>196</td>
</tr>
<tr>
<td>7.6</td>
<td>European call option pricing formulas for diffusion GMRP</td>
<td>196</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Ergodic geometric Markov renewal process</td>
<td>196</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Double averaged diffusion GMRP</td>
<td>198</td>
</tr>
<tr>
<td>7.6.3</td>
<td>European call option pricing formula for merged diffusion GMRP</td>
<td>198</td>
</tr>
<tr>
<td>7.7</td>
<td>Applications</td>
<td>199</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Example of two state ergodic diffusion approximation</td>
<td>199</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Example of merged diffusion approximation</td>
<td>200</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Call option pricing for ergodic GMRP</td>
<td>205</td>
</tr>
<tr>
<td>7.7.4</td>
<td>Call option pricing formulas for double averaged GMRP</td>
<td>206</td>
</tr>
</tbody>
</table>
8 Normal Deviation of a Security Market by the GMRP

8.1 Chapter overview
8.2 Normal deviations of the geometric Markov renewal processes
 8.2.1 Ergodic normal deviations
 8.2.2 Reducible (merged) normal deviations
 8.2.3 Normal deviations under double averaging
8.3 Applications
 8.3.1 Example of two state ergodic normal deviated GMRP
 8.3.2 Example of merged normal deviations in 2 classes
8.4 European call option pricing formula for normal deviated GMRP
 8.4.1 Ergodic GMRP
 8.4.2 Double averaged normal deviated GMRP
 8.4.3 Call option pricing for ergodic GMRP
 8.4.4 Call option pricing formulas for double averaged GMRP
8.5 Martingale property of GMRP
8.6 Option pricing formulas for stock price modelled by GMRP
8.7 Examples of option pricing formulas modelled by GMRP
 8.7.1 Example of two states in discrete time
 8.7.2 Generalized example in continuous time in Poisson case

References

9 Poisson Approximation of a Security Market by the Geometric Markov Renewal Processes

9.1 Chapter overview
9.2 Averaging in Poisson scheme
9.3 Option pricing formula under Poisson scheme
9.4 Application of Poisson approximation with a finite number of jump values
 9.4.1 Applications in finance
 9.4.1.1 Risk neutral measure
 9.4.1.2 On market incompleteness
 9.4.2 Example

References

10 Stochastic Stability of Fractional RDS in Finance

10.1 Chapter overview
10.2 Fractional Brownian motion as an integrator
10.3 Stochastic stability of a fractional \((B,S)\)-security market in Stratonovich scheme
 10.3.1 Definition of fractional Brownian market in Stratonovich scheme
 10.3.2 Stability almost sure, in mean and mean square of fractional Brownian markets without jumps in Stratonovich scheme

References
10.3.3 Stability almost sure, in mean and mean-square of fractional Brownian markets with jumps in Stratonovich scheme 242

10.4 Stochastic stability of fractional \((B,S)\)-security market in Hu and Oksendal scheme 245

10.4.1 Definition of fractional Brownian market in Hu and Oksendal scheme 246

10.4.2 Stability almost sure, in mean and mean square of fractional Brownian markets without jumps in Hu and Oksendal scheme 246

10.4.3 Stability almost sure, in mean and mean square of fractional Brownian markets with jumps in Hu and Oksendal scheme 248

10.5 Stochastic stability of fractional \((B,S)\)-security market in Elliott and van der Hoek scheme 250

10.5.1 Definition of fractional Brownian market in Elliott and van der Hoek Scheme 250

10.5.2 Stability almost sure, in mean and mean square of fractional Brownian markets without jumps in Elliott and van der Hoek Scheme 251

10.5.3 Stability almost sure, in mean and mean square of fractional Brownian markets with jumps in Elliott and van der Hoek scheme 253

10.6 Appendix 255

10.6.1 Definitions of Lyapunov indices and stability 256

10.6.2 Asymptotic property of fractional Brownian motion 257

References 258

11 Stability of RDS with Jumps in Interest Rate Theory 261

11.1 Chapter overview 261
11.2 Introduction 261
11.3 Definition of the stochastic stability 262
11.4 The stability of the Black-Scholes model 263
11.5 A model of \((B,S)\)-securities market with jumps 264
11.6 Vasicek model for the interest rate 267
11.7 The Vasicek model of the interest rate with jumps 268
11.8 Cox-Ingersoll-Ross interest rate model 270
11.9 Cox-Ingersoll-Ross model with random jumps 272
11.10 A generalized interest rate model 273
11.11 A generalized model with random jumps 274

References 275

12 Stability of Delayed RDS with Jumps and Regime-Switching in Finance 277

12.1 Chapter overview 277
12.2 Stochastic differential delay equations with Poisson bifurcations 277
12.3 Stability theorems 278