Contents

Preface, xvii
Author, xix

CHAPTER 1 • Introduction 1

CHAPTER 2 • Intuition about Uncertainty and Risk 5
 2.1 CHAPTER SUMMARY 5
 2.2 INTRODUCTION 5
 2.3 INDIVIDUAL ATTITUDES TOWARD RISK 6
 2.4 THE ST. PETERSBURG PARADOX 11
 2.4.1 Resolving the Paradox with Utilities 12
 2.4.2 Resolving the Petersburg Paradox with Risk Exposure 13
 2.4.3 Other Ways to Resolve the Paradox 13
 2.5 LOOKING FORWARD TO CHAPTER 3 13
EXERCISES 14
FURTHER READING 15

CHAPTER 3 • The Classical Approach to Decision Making under Uncertainty 17
 3.1 CHAPTER SUMMARY 17
 3.2 MAP TO THE FUTURE 21
EXERCISE 21
FURTHER READING 21
| CHAPTER 4 • Valuing Investment Opportunities: The Discounted Cash Flow Method |
|---------------------------------|-----------------------------|
| 4.1 CHAPTER SUMMARY | 23 |
| 4.2 DISCOUNTED CASH FLOW METHOD FOR EVALUATING INVESTMENT OPPORTUNITIES | 24 |
| 4.2.1 Example of a Discounted Cash Flow Technique | 24 |
| 4.2.2 Choosing the Discount Rate P | 24 |
| 4.2.3 Philosophical Problems with DCF | 25 |
| 4.2.4 Why This Is a Good Approach Despite Its Uncertain Philosophical Status | 26 |
| 4.3 CONCLUSIONS | 26 |
| EXERCISES | 26 |
| FURTHER READING | 27 |

<p>	CHAPTER 5 • Repaying Loans over Time
5.1 CHAPTER SUMMARY	29
5.2 INTRODUCTION	30
5.3 REPAYING A LOAN OVER TIME: EXCEL	31
5.4 REPAYING A LOAN OVER TIME: MATHEMATICS	33
5.5 FIRST-ORDER DIFFERENCE EQUATIONS	34
5.6 SOLVING THE LOAN REPAYMENT DIFFERENCE EQUATION	35
5.6.1 Loan Repaid "Quickly"	37
5.6.2 Loan Repaid Continuously	38
5.7 MORE EXAMPLES OF USING DIFFERENCE EQUATIONS TO FIND LOAN PAYMENTS	41
5.8 WRITING THE DIFFERENCE EQUATION IN FORWARD VERSUS BACKWARD FORMS	45
5.9 BRIDGES TO THE FUTURE	46
EXERCISES	46
FURTHER READING	46
<table>
<thead>
<tr>
<th>CHAPTER 6</th>
<th>Bond Pricing with Default: Using Simulations</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 CHAPTER SUMMARY</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>6.2 MODELING A DEFAULTABLE BOND OR LOAN</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>6.3 FINANCIAL INSIGHTS</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>6.4 SIMULATING LOAN PORTFOLIOS</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>6.5 WHAT HAPPENS IF THERE ARE A LARGE NUMBER OF INDEPENDENT LOANS?</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>6.6 BRIDGE TO THE FUTURE</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>EXERCISES</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>FURTHER READING</td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 7</th>
<th>Bond Pricing with Default: Using Difference Equations</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 CHAPTER SUMMARY</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>7.2 RISKY BONDS</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>7.3 USING DIFFERENCE EQUATIONS TO FIND C</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>7.4 EXPLORING THE INSIGHTS ARISING FROM EQUATION 7.5</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>7.5 DETERMINING RECOVERY RATES</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>7.6 DETERMINING THE PROBABILITY OF DEFAULT</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>7.7 A BRIDGE TO THE FUTURE</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>EXERCISES</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>FURTHER READING</td>
<td>76</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 8</th>
<th>Difference Equations for Life Annuities</th>
<th>79</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 CHAPTER SUMMARY</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>8.2 INTRODUCTION</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>EXERCISES</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>FURTHER READING</td>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 9</th>
<th>Tranching and Collateralized Debt Obligations</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 CHAPTER SUMMARY</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>9.2 COLLATERALIZED DEBT OBLIGATIONS</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 17 • Value at Risk

17.1 CHAPTER SUMMARY 187

17.2 INTRODUCTION TO VALUE AT RISK 187

17.3 PITFALLS OF VaR 191

17.4 SUMMARY 191

EXERCISES 191

FURTHER READING 192

Chapter 18 • Pricing Options Using Binomial Trees

18.1 CHAPTER SUMMARY 193

18.2 INTRODUCTION 194

18.3 BINOMIAL MODEL 195

18.4 SINGLE-PERIOD BINOMIAL TREE MODEL FOR OPTION PRICING 199

18.5 EXTENDING THE BINOMIAL MODEL TO MULTIPLE TIME STEPS 201

18.5.1 Numerical Example: Pricing a Two-Period Binomial Put Option 202

18.6 MULTIPLE-STEP BINOMIAL TREES 210

18.7 SUMMARY 215

EXERCISES 216

FURTHER READING 217

Chapter 19 • Random Walks

19.1 CHAPTER SUMMARY 219

19.2 INTRODUCTION 219

19.3 DERIVING THE DIFFUSION PARTIAL DIFFERENTIAL EQUATION 222

EXERCISES 224

FURTHER READING 225

Chapter 20 • Basic Stochastic Calculus

20.1 CHAPTER SUMMARY 227

20.2 BASICS OF STOCHASTIC CALCULUS 227
20.3 STOCHASTIC INTEGRATION BY EXAMPLES 229
20.3.1 Review of the Left Endpoint Rule of Introductory Calculus 229
20.3.2 Itô Integration 231
20.3.3 Itô Isometry 235
20.3.4 Introduction to Ordinary Differential Equations 237
20.3.5 Solution of SDEs 241
20.3.5.1 Arithmetic Brownian Motion 241
20.3.5.2 Geometric Brownian Motion 242
20.3.5.3 Ornstein–Uhlenbeck Process 243
20.4 CONCLUSIONS AND BRIDGE TO NEXT CHAPTERS 249
EXERCISES 249
FURTHER READING 252

CHAPTER 21 Simulating Geometric Brownian Motion 253
21.1 SIMULATING GBM STOCK PRICES AT A SINGLE FUTURE TIME 253
21.2 SIMULATING A TIME SEQUENCE OF GBM STOCK PRICES 257
21.3 SUMMARY 258
EXERCISES 258
FURTHER READING 259

CHAPTER 22 Black Scholes PDE for Pricing Options in Continuous Time 261
22.1 CHAPTER SUMMARY 261
22.2 INTRODUCTION 261
22.3 HEDGING ARGUMENT 262
22.4 CALL PRICE SOLUTION OF THE BLACK SCHOLES EQUATION 264
22.5 WHY SHORT SELLING IS SO DANGEROUS 264
22.6 SUMMARY AND BRIDGE TO THE FUTURE 265
EXERCISES 265
FURTHER READING 266
Chapter 23 • Solving the Black Scholes PDE

23.1 CHAPTER SUMMARY 267
23.2 SOLVING THE BLACK SCHOLES PARTIAL PDE FOR A EUROPEAN CALL 267
23.3 GENERAL EUROPEAN OPTION PAYOFFS: RISK-NEUTRAL PRICING 281
23.4 SUMMARY 284
EXERCISES 285

Chapter 24 • Pricing Put Options Using Put Call Parity

24.1 CHAPTER SUMMARY 287
24.2 SUMMARY 290
EXERCISES 290
FURTHER READING 290

Chapter 25 • Some Approximate Values of the Black Scholes Call Formula

25.1 INTRODUCTION 291
25.2 APPROXIMATE CALL FORMULAS AT-THE-MONEY 292
25.3 APPROXIMATE CALL VALUES NEAR-THE-MONEY 295
25.4 APPROXIMATE CALL VALUES FAR-FROM-THE-MONEY 296
EXERCISES 304
FURTHER READING 304

Chapter 26 • Simulating Delta Hedging

26.1 CHAPTER SUMMARY 305
26.2 INTRODUCTION 305
26.3 HOW DOES DELTA HEDGING REALLY WORK? 308
26.4 UNDERSTANDING THE RESULTS OF THE DELTA HEDGING PROCESS 312
26.5 THE IMPACT OF TRANSACTION COSTS 315
26.6 A HEDGERS PERSPECTIVE ON OPTION GAMMA OR, "BIG GAMMA" = "BIG MONEY" 317
Contents

26.7 BRIDGE TO THE FUTURE 318
EXERCISES 319
FURTHER READING 319

Chapter 27 • Black Scholes with Dividends 321

27.1 CHAPTER SUMMARY 321
27.2 MODELING DIVIDENDS 321
 27.2.1 "Tailed Stock Positions" 322
27.3 THE BLACK SCHOLES PDE FOR THE CONTINUOUSLY PAID DIVIDEND CASE 324
27.4 PRICING THE PREPAID FORWARD ON A CONTINUOUS DIVIDEND PAYING STOCK 326
27.5 MORE COMPLICATED DERIVATIVES ON UNDERLYINGS PAYING CONTINUOUS DIVIDENDS 327
EXERCISES 329
FURTHER READING 329

Chapter 28 • American Options 331

28.1 CHAPTER SUMMARY 331
28.2 INTRODUCTION AND BINOMIAL PRICING 331
28.3 AMERICAN PUTS 337
28.4 AMERICAN CALLS 340
EXERCISES 342
FURTHER READING 343

Chapter 29 • Pricing the Perpetual American Put and Call 345

29.1 CHAPTER SUMMARY 345
29.2 PERPETUAL OPTIONS: UNDERLYING PAYS NO DIVIDENDS 345
 29.2.1 Basic Perpetual American Put 347
29.3 BASIC PERPETUAL AMERICAN CALL 350
29.4 PERPETUAL AMERICAN CALL/PUT MODEL WITH DIVIDENDS 352
29.5 THE PERPETUAL AMERICAN CALL, CONTINUOUS DIVIDENDS 357
EXERCISE 362
FURTHER READING 362

CHAPTER 30 • Options on Multiple Underlying Assets 363
30.1 INTRODUCTION 363
30.2 EXCHANGE OPTIONS 365
EXERCISE 373
FURTHER READING 373

CHAPTER 31 • Interest Rate Models 375
31.1 CHAPTER SUMMARY 375
31.2 SETTING THE STAGE FOR STOCHASTIC INTEREST RATE MODELS 375
31.3 PRICING WHEN YOU CANNOT TRADE THE UNDERLYING ASSET 377
31.4 HEDGING BONDS IN CONTINUOUS TIME 380
31.5 SOLVING THE BOND PRICING PDE 383
31.6 VASICEK MODEL 386
31.7 SUMMARY 395
EXERCISES 395
FURTHER READING 396

CHAPTER 32 • Incomplete Markets 397
32.1 CHAPTER SUMMARY 397
32.2 INTRODUCTION TO INCOMPLETE MARKETS 397
32.3 TRYING TO HEDGE OPTIONS ON A TRINOMIAL TREE 398
32.3.1 Review of the Standard Binomial Tree Model 398
32.3.2 Extension to a Trinomial Tree Model 400
32.4 MINIMUM VARIANCE HEDGING OF A EUROPEAN OPTION WITH DEFAULT 408
32.4.1 Binomial Tree Model for Option Pricing 408
Contents

32.5 BINOMIAL TREE MODEL WITH DEFAULT RISK

EXERCISE

FURTHER READING

APPENDIX 1: PROBABILITY THEORY BASICS, 415

APPENDIX 2: PROOF OF DEMOIVRE–LAPLACE THEOREM, 475

APPENDIX 3: NAMING VARIABLES IN EXCEL, 481

APPENDIX 4: BUILDING VBA MACROS FROM EXCEL, 485

INDEX, 501