CONTENTS

PREFACE

Chapter 1 INTRODUCTION
1.1 Cash Flows 2
1.2 Investments and Markets 3
 - The Comparison Principle 4
 - Arbitrage 4
 - Dynamics 5
 - Risk Aversion 5
1.3 Typical Investment Problems 6
 - Pricing 6
 - Hedging 7
 - Risk Assessment and Management 8
 - Pure Investment 8
 - Other Problems 9
1.4 Organization of the Book 9
 - Deterministic Cash Flow Streams 9
 - Single-Period Random Cash Flow Streams 10
 - Derivative Assets 10
 - General Cash Flow Streams 11

Part I: DETERMINISTIC CASH FLOW STREAMS

Chapter 2 THE BASIC THEORY OF INTEREST
2.1 Principal and Interest 15
 - Simple Interest 15
 - Compound Interest 16
 - Compounding at Various Intervals 17
 - Continuous Compounding 18
 - Debt 19
 - Money Markets 19
2.2 Present Value 20
2.3 Present and Future Values of Streams 21
 - The Ideal Bank 21
 - Future Value 21
 - Present Value 22
Chapter 3 FIXED-INCOME SECURITIES

3.1 The Market for Future Cash
 Savings Deposits 43
 Money Market Instruments 44
 U.S. Government Securities 44
 Other Bonds 45
 Mortgages 46
 Annuities 46

3.2 Value Formulas
 Perpetual Annuities 47
 Finite-Life Streams 48
 Running Amortization* 50
 Annual Worth* 51

3.3 Bond Details
 Quality Ratings 53

3.4 Yield
 Qualitative Nature of Price-Yield Curves 54
 Other Yield Measures 57

3.5 Duration
 Interest Duration 59
 Macaulay Duration 60
 Explicit Formula* 61
 Qualitative Properties of Duration* 62
 Duration and Sensitivity 63
 Duration of a Portfolio 64

3.6 Immunization 65

3.7 Convexity* 68

3.8 Summary 69

Exercises 71

References 74
Part II: SINGLE-PERIOD RANDOM CASH FLOWS

Chapter 6 MEAN–VARIANCE PORTFOLIO THEORY

6.1 Asset Return
 Short Sales
 Portfolio Return

6.2 Random Variables
 Expected Value
 Variance
 Several Random Variables
 Covariance
 Variance of a Sum

6.3 Random Returns
 Mean–Standard Deviation Diagram

6.4 Portfolio Mean and Variance
 Mean Return of a Portfolio
 Variance of Portfolio Return
 Diversification*
 Diagram of a Portfolio

6.5 The Feasible Set
 The Minimum-Variance Set and the Efficient Frontier

6.6 The Markowitz Model
 Solution of the Markowitz Problem*
 Nonnegativity Constraints*

6.7 The Two-Fund Theorem*

6.8 Inclusion of a Risk-Free Asset

6.9 The One-Fund Theorem
 Solution Method*
 Explicit Solution

6.10 Summary

Exercises

References

Chapter 7 THE CAPITAL ASSET PRICING MODEL

7.1 Market Equilibrium

7.2 The Capital Market Line

7.3 The Pricing Model
 Betas of Common Stocks
 Beta of a Portfolio

7.4 The Security Market Line
 Systematic Risk

7.5 Investment Implications

7.6 Performance Evaluation

7.7 CAPM as a Pricing Formula
 Linearity of Pricing and the Certainty Equivalent Form

7.8 Project Choice*
Chapter 8 OTHER PRICING MODELS

8.1 Introduction
8.2 Factor Models
 Single-Factor Model
 Portfolio Parameters
 Multifactor Models
 Selection of Factors
8.3 The CAPM as a Factor Model
 The Characteristic Line
8.4 Arbitrage Pricing Theory*
 Simple Version of APT
 Well-Diversified Portfolios
 General APT
 APT and CAPM
8.5 Projection Pricing with Factors
8.6 A Multiperiod Fallacy
8.7 Summary
Exercises
References

Chapter 9 DATA AND STATISTICS

9.1 Basic Estimation Methods
 Period-Length Effects
 Mean Blur
9.2 Estimation of Other Parameters
 Estimation of σ
 a Blur
9.3 The Effect of Estimation Errors
 Three Views
 Maximum Tangent
 Compounding Effect
9.4 Conservative Approaches
 Better Estimates*
9.5 Tilting Away From Equilibrium*
9.6 Summary
Exercises
References

Chapter 10 RISK MEASURES

10.1 Value at Risk
Properties of VaR	260
Capital Requirement	260
10.2 Computation of Value at Risk	261
Model-Based Method	261
Other Models	264
Shortcut for Discrete Distributions	264
Empirical Approach for Market Risk*	265
10.3 Criticisms of VaR	266
Diversification Failure	266
Poor Assessment of Risk	267
Discontinuous Value	268
10.4 Coherent Risk Measures	269
10.5 Conditional Value at Risk	270
10.6 Coherent Characterization*	272
10.7 Convexity*	274
10.8 Summary	275
Exercises	275
References	277

Chapter 11 GENERAL PRINCIPLES

11.1 Introduction	279
11.2 Utility Functions	279
Equivalent Utility Functions	281
11.3 Risk Aversion	282
Derivatives	284
Risk Aversion Coefficients	284
Certainty Equivalent	284
11.4 Specification of Utility Functions*	285
Direct Measurement of Utility	285
Parameter Families	287
Questionnaire Method	288
11.5 Utility Functions and the Mean–Variance Criterion*	288
Quadratic Utility	288
Normal Returns	290
11.6 Linear Pricing	291
Type A Arbitrage	291
Portfolios	292
Type B Arbitrage	292
11.7 Portfolio Choice	293
11.8 Arbitrage Bounds	296
11.9 Zero-Level Pricing	297
11.10 Log-Optimal Pricing*	299
11.11 Finite State Models	301
Completeness	302
State Prices	302
Positive State Prices	302
11.12 Risk-Neutral Pricing 304
11.13 Summary 306
Exercises 308
References 311

Part III: DERIVATIVE SECURITIES

Chapter 12 FORWARDS, FUTURES, AND SWAPS
12.1 Pricing Principles 316
12.2 Forward Contracts, 318
 Forward Interest Rates 319
12.3 Forward Prices 319
 Costs of Carry 322
 Tight Markets 324
 Investment Assets 325
12.4 The Value of a Forward Contract 326
12.5 Swaps* 327
 Value of a Commodity Swap 327
 Value of an Interest Rate Swap 329
12.6 Basics of Futures Contracts 329
12.7 Futures Prices 332
12.8 Relation to Expected Spot Price* 335
12.9 The Perfect Hedge 336
12.10 The Minimum-Variance Hedge 336
12.11 Optimal Hedging* 340
12.12 Hedging Nonlinear Risk* 341
12.13 Summary 345
Exercises 346
References 349

Chapter 13 MODELS OF ASSET DYNAMICS
13.1 Binomial Lattice Model 351
13.2 The Additive Model 353
 Normal Price Distribution 354
13.3 The Multiplicative Model 355
 Lognormal Prices 355
 Real Stock Distributions 356
13.4 Typical Parameter Values* 357
13.5 Lognormal Random Variables 358
13.6 Random Walks and Wiener Processes 359
 Generalized Wiener Processes and Ito Processes 361
13.7 A Stock Price Process 362
 Lognormal Prices 363
 Standard Ito Form 363
 Simulation 365
13.8 Ito's Lemma* 366
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.9 Binomial Lattice Revisited</td>
<td></td>
</tr>
<tr>
<td>13.10 Summary</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>Chapter 14 BASIC OPTIONS THEORY</td>
<td></td>
</tr>
<tr>
<td>14.1 Option Concepts</td>
<td>375</td>
</tr>
<tr>
<td>14.2 The Nature of Option Values</td>
<td>377</td>
</tr>
<tr>
<td>Time Value of Options</td>
<td>379</td>
</tr>
<tr>
<td>Other Factors Affecting the Value of Options</td>
<td>379</td>
</tr>
<tr>
<td>14.3 Option Combinations and 'Put--Call Parity</td>
<td>380</td>
</tr>
<tr>
<td>Put--Call Parity</td>
<td>381</td>
</tr>
<tr>
<td>14.4 Early Exercise</td>
<td>382</td>
</tr>
<tr>
<td>14.5 Single-Period Binomial Options Theory</td>
<td>383</td>
</tr>
<tr>
<td>14.6 Multiperiod Options</td>
<td>386</td>
</tr>
<tr>
<td>No Early Exercise</td>
<td>389</td>
</tr>
<tr>
<td>14.7 More General Binomial Problems</td>
<td>389</td>
</tr>
<tr>
<td>Put Options</td>
<td>389</td>
</tr>
<tr>
<td>Dividend and Term Structure Problems*</td>
<td>391</td>
</tr>
<tr>
<td>Futures Options*</td>
<td>391</td>
</tr>
<tr>
<td>14.8 Evaluating Real Investment Opportunities</td>
<td>393</td>
</tr>
<tr>
<td>Real Options</td>
<td>397</td>
</tr>
<tr>
<td>Linear Pricing</td>
<td>399</td>
</tr>
<tr>
<td>14.9 General Risk-Neutral Pricing*</td>
<td>401</td>
</tr>
<tr>
<td>14.10 Three-principle Power</td>
<td>402</td>
</tr>
<tr>
<td>Decomposition of the Pricing Principles</td>
<td>403</td>
</tr>
<tr>
<td>14.11 Summary</td>
<td>403</td>
</tr>
<tr>
<td>Exercises</td>
<td>404</td>
</tr>
<tr>
<td>References</td>
<td>408</td>
</tr>
<tr>
<td>Chapter 15 ADDITIONAL OPTIONS TOPICS</td>
<td></td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>410</td>
</tr>
<tr>
<td>15.2 The Black--Scholes Equation</td>
<td>410</td>
</tr>
<tr>
<td>Proof of the Black--Scholes Equation*</td>
<td>412</td>
</tr>
<tr>
<td>Self-Financing Strategies*</td>
<td>414</td>
</tr>
<tr>
<td>15.3 Call Option Formula</td>
<td>414</td>
</tr>
<tr>
<td>15.4 Risk-Neutral Valuation*</td>
<td>416</td>
</tr>
<tr>
<td>15.5 Delta</td>
<td>417</td>
</tr>
<tr>
<td>15.6 Replication, Synthetic Options, and Portfolio Insurance*</td>
<td>419</td>
</tr>
<tr>
<td>15.7 Volatility Smiles</td>
<td>422</td>
</tr>
<tr>
<td>Equality of Implied Volatilities</td>
<td>423</td>
</tr>
<tr>
<td>Risk-Neutral Probability Density*</td>
<td>424</td>
</tr>
<tr>
<td>15.8 Computational Methods</td>
<td>425</td>
</tr>
<tr>
<td>Monte Carlo Simulation</td>
<td>426</td>
</tr>
<tr>
<td>Finite-Difference Methods</td>
<td>427</td>
</tr>
<tr>
<td>Binomial and Trinomial Lattices</td>
<td>429</td>
</tr>
</tbody>
</table>
15.9 Exotic Options
 Pricing* 431
15.10 Comparison of Methods 433
15.11 Storage Costs and Dividends* 435
 Binomial Form 435
 Brownian Motion Form* 436
15.12 Martingale Pricing* 437
15.13 Axioms and Black–Scholes
 Market Price of Risk 440
15.14 Summary 440
Exercises 442
References 446

Chapter 16 INTEREST RATE DERIVATIVES 448
16.1 Examples of Interest Rate Derivatives 448
16.2 The Need for a Theory 450
16.3 The Binomial Approach
 Implied Term Structure 451
 No Arbitrage Opportunities 454
16.4 Pricing Applications
 Bond Derivatives 455
 Forwards and Futures* 455
 Futures* 457
16.5 Leveling and Adjustable-Rate Loans*
 Adjustable-Rate Loans 457
16.6 The Forward Equation 461
16.7 Matching the Term Structure
 The Ho–Lee Model 464
 The Black–Derman–Toy Model 465
 Matching Implied Volatilities 465
16.8 Immunization 467
16.9 Collateralized Mortgage Obligations*
16.10 Models of Interest Rate Dynamics*
16.11 Continuous-Time Solutions*
 The Backward Equation 474
 Affine Processes* 476
 Risk-Neutral Pricing Formula 477
16.12 Extensions 477
16.13 Summary 478
Exercises 479
References 482

Chapter 17 CREDIT RISK 483
17.1 The Classic Merton Model
 Probability of Default 484
 Credit Spread 486
17.2 First Passage Times 487
 Lattice Methods 488
 Early Default* 490
 Coupons* 491
17.3 Rating Methods 492
17.4 Intensity (Reduced-Form) Model 493
 Poisson Processes 493
 Inhomogeneous Process 495
17.5 Stochastic Intensity Model* 495
17.6 Intermediate Receipts 496
17.7 Analytically Tractable Cox Processes 497
 Model Fitting 497
17.8 Simulation 498
 Direct Simulation 498
 A Better Way 499
17.9 Lattice Methods 500
17.10 Correlated Defaults 503
17.11 Credit Derivatives 505
 Bonds and Loans 506
 Credit Default Swaps (CDS's) 506
 Forwards and Options on CDS's 508
 Total Return Swaps (TRS's) 508
 Collateralized Debt Obligations (CDO's) 509
17.12 Summary 511
Exercises 512
References 513

Part IV: GENERAL CASH FLOW STREAMS

Chapter 18 OPTIMAL PORTFOLIO GROWTH 517
18.1 The Investment Wheel 517
 Analysis of the Wheel 519
18.2 The Log Utility Approach to Growth 519
 Log Utility Form 521
 Examples 521
18.3 Properties of the Log-Optimal Strategy* 525
18.4 Alternative Approaches* 526
 Other Utility 526
18.5 Continuous-Time Growth 528
 Dynamics of Several Stocks 528
 Portfolio Dynamics 529
 Implications for Growth 530
 The Portfolio of Maximum Growth Rate 530
18.6 The Feasible Region 531
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The Efficient Frontier</td>
<td>531</td>
</tr>
<tr>
<td>Inclusion of a Risk-Free Asset</td>
<td>532</td>
</tr>
<tr>
<td>18.7 The Log-Optimal Pricing Formula*</td>
<td>536</td>
</tr>
<tr>
<td>Market Data</td>
<td>539</td>
</tr>
<tr>
<td>18.8 Log-Optimal Pricing and the Black–Scholes Equation*</td>
<td>540</td>
</tr>
<tr>
<td>18.9 Summary</td>
<td>541</td>
</tr>
<tr>
<td>Exercises</td>
<td>542</td>
</tr>
<tr>
<td>References</td>
<td>546</td>
</tr>
</tbody>
</table>

Chapter 19 GENERAL INVESTMENT EVALUATION

19.1 General Present Value
 - Projects and Opportunities | 547
19.2 Multiperiod Securities*
 - Assets | 548
 - Portfolio Strategies | 549
 - Arbitrage | 549
 - Short-Term Risk-Free Rates | 550
19.3 Risk-Neutral Pricing | 550
19.4 Optimal Pricing
 - The Single-Period Problem | 552
 - Applications | 553
19.5 The Double Lattice | 555
19.6 Pricing in a Double Lattice | 557
19.7 Investments with Private Uncertainty
 - General Approach | 560
19.8 Buying Price Analysis
 - Certainty Equivalent and Exponential Utility | 562
 - Sequential Calculation of CE | 566
 - Multiperiod Case | 567
 - General Approach | 568
19.9 Pricing Axioms for Continuous Time
 - Option Formula | 569
 - Risk-Neutral Form | 570
 - Alternative Forms | 571
19.10 Summary | 572
| Exercises | 576
| References | 578

Appendix A BASIC PROBABILITY THEORY

A.1 General Concepts | 579
A.2 Normal Random Variables | 580
A.3 Lognormal Random Variables | 581

Appendix B CALCULUS AND OPTIMIZATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1 Functions</td>
<td>583</td>
</tr>
<tr>
<td>B.2 Differential Calculus</td>
<td>584</td>
</tr>
<tr>
<td>B.3 Optimization</td>
<td>585</td>
</tr>
</tbody>
</table>

ANSWERS TO EXERCISES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answers to Exercises</td>
<td>588</td>
</tr>
</tbody>
</table>

INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>594</td>
</tr>
</tbody>
</table>