MODELING AND PRICING OF SWAPS FOR FINANCIAL AND ENERGY MARKETS WITH STOCHASTIC VOLATILITIES

Anatoliy Swishchuk
University of Calgary, Canada
Contents

Preface vii

Acknowledgments xi

1. Stochastic Volatility 1
 1.1 Introduction ... 1
 1.2 Non-Stochastic Volatilities 2
 1.2.1 Historical Volatility 2
 1.2.2 Implied Volatility 2
 1.2.3 Level-Dependent Volatility and Local Volatility 3
 1.3 Stochastic Volatility 3
 1.3.1 Approaches to Introduce Stochastic Volatility 5
 1.3.2 Discrete Models for Stochastic Volatility 6
 1.3.3 Jump-Diffusion Volatility 6
 1.3.4 Multi-Factor Models for Stochastic Volatility 6
 1.4 Summary ... 7

Bibliography 8

2. Stochastic Volatility Models 11
 2.1 Introduction ... 11
 2.2 Heston Stochastic Volatility Model 11
 2.3 Stochastic Volatility with Delay 12
 2.4 Multi-Factor Stochastic Volatility Models 12
 2.5 Stochastic Volatility Models with Delay and Jumps 13
 2.6 Lévy-Based Stochastic Volatility with Delay 14
 2.7 Delayed Heston Model 14
 2.8 Semi-Markov-Modulated Stochastic Volatility 15
 2.9 COGARCH(1,1) Stochastic Volatility Model 16
 2.10 Stochastic Volatility Driven by Fractional Brownian Motion 16

xiii
2.10.1 Stochastic Volatility Driven by Fractional Ornstein-Uhlenbeck Process 16
2.10.2 Stochastic Volatility Driven by Fractional Vasicek Process 17
2.10.3 Markets with Stochastic Volatility Driven by Geometric Fractional Brownian Motion 17
2.10.4 Stochastic Volatility Driven by Fractional Continuous-Time GARCH Process 17

2.11 Mean-Reverting Stochastic Volatility Model (Continuous-Time GARCH Model) in Energy Markets 18

2.12 Summary .. 19

Bibliography .. 19

3. Swaps .. 21

3.1 Introduction .. 21
3.2 Definitions of Swaps .. 21
3.2.1 Variance and Volatility Swaps .. 21
3.2.2 Covariance and Correlation Swaps .. 23
3.2.3 Pseudo-Swaps .. 24

3.3 Summary .. 26

Bibliography .. 26

4. Change of Time Methods .. 29

4.1 Introduction .. 29
4.2 Descriptions of the Change of Time Methods .. 29
4.2.1 The General Theory of Time Changes .. 31
4.2.2 Subordinators as Time Changes .. 32

4.3 Applications of Change of Time Method .. 33
4.3.1 Black-Scholes by Change of Time Method .. 33
4.3.2 An Option Pricing Formula for a Mean-Reverting Asset Model Using a Change of Time Method .. 33
4.3.3 Swaps by Change of Time Method in Classical Heston Model .. 33
4.3.4 Swaps by Change of Time Method in Delayed Heston Model .. 34

4.4 Different Settings of the Change of Time Method .. 34

4.5 Summary .. 36

Bibliography .. 37

5. Black-Scholes Formula by Change of Time Method .. 39

5.1 Introduction .. 39
5.2 Black-Scholes Formula by Change of Time Method .. 39
10.4 Parameter Estimation .. 143
10.6 Summary ... 147
Bibliography ... 148

11. Delayed Heston Model: Improvement of the Volatility Surface Fitting 151
11.1 Introduction .. 151
11.2 Modeling of Delayed Heston Stochastic Volatility 153
11.3 Model Calibration ... 155
11.4 Numerical Results ... 158
11.5 Summary ... 159
Bibliography ... 159

12. Pricing and Hedging of Volatility Swap in the Delayed Heston Model 161
12.1 Introduction .. 161
12.2 Modeling of Delayed Heston Stochastic Volatility: Recap 163
12.3 Pricing Variance and Volatility Swaps 164
12.4 Volatility Swap Hedging 167
12.5 Numerical Results ... 169
12.6 Summary ... 171
Bibliography ... 171

13. Pricing of Variance and Volatility Swaps with Semi-Markov Volatilities 173
13.1 Introduction .. 173
13.2 Martingale Characterization of Semi-Markov Processes 173
 13.2.1 Markov Renewal and Semi-Markov Processes 173
 13.2.2 Jump Measure for Semi-Markov Process 175
 13.2.3 Martingale Characterization of Semi-Markov Processes 175
13.3 Minimal Risk-Neutral (Martingale) Measure for Stock Price with Semi-Markov Stochastic Volatility 176
 13.3.2 Minimal Martingale Measure 176
13.4 Pricing of Variance Swaps for Stochastic Volatility Driven by a Semi-Markov Process 177
13.5 Example of Variance Swap for Stochastic Volatility Driven by Two-State Continuous-Time Markov Chain 179
13.6 Pricing of Volatility Swaps for Stochastic Volatility Driven by a Semi-Markov Process 179
 13.6.1 Volatility Swap ... 179
 13.6.2 Pricing of Volatility Swap 181
13.7 Discussions of Some Extensions 182
 13.7.1 Local Current Stochastic Volatility Driven by a Semi-
 Markov Process (Local Current Semi-Markov Volatility) . 182
 13.7.2 Local Stochastic Volatility Driven by a Semi-Markov
 Process (Local Semi-Markov Volatility) 183
 13.7.3 Dupire Formula for Semi-Markov Local Volatility 183
 13.7.4 Risk-Minimizing Strategies (or Portfolios) and Residual
 Risk .. 184
13.8 Summary ... 186

Bibliography .. 186

14. Covariance and Correlation Swaps for Markov-Modulated Volatilities 189
 14.1 Introduction .. 189
 14.2 Martingale Representation of Markov Processes 191
 14.3 Variance and Volatility Swaps for Financial Markets with Markov-
 Modulated Stochastic Volatilities 194
 14.3.1 Pricing Variance Swaps 195
 14.3.2 Pricing Volatility Swaps 196
 14.4 Covariance and Correlation Swaps for a Two Risky Assets for
 Financial Markets with Markov-Modulated Stochastic Volatilities . 198
 14.4.1 Pricing Covariance Swaps 198
 14.4.2 Pricing Correlation Swaps 200
 14.4.3 Correlation Swap Made Simple 200
 14.5 Example: Variance, Volatility, Covariance and Correlation Swaps
 for Stochastic Volatility Driven by Two-State
 Continuous Markov Chain 202
 14.6 Numerical Example .. 203
 14.6.1 S&P500: Variance and Volatility Swaps 203
 14.6.2 S&P500 and NASDAQ-100: Covariance and Correlation
 Swaps ... 205
 14.7 Correlation Swaps: First Order Correction 206
 14.8 Summary ... 209

Bibliography .. 209

15. Volatility and Variance Swaps for the COGARCH(1,1) Model 211
 15.1 Introduction ... 211
 15.2 Lévy Processes .. 212
 15.3 The COGARCH Process of Klüppelberg et al. 213
 15.3.1 The COGARCH(1,1) Equations 213
 15.3.2 Informal Derivation of COGARCH(1,1) Equation 213
 15.3.3 The Second Order Properties of the Volatility Process \sigma_t \ 214
15.4 Pricing Variance and Volatility Swaps under the COGARCH(1,1) Model ... 214
15.4.1 Variance Swaps .. 215
15.4.2 Volatility Swaps .. 217
15.5 Formula for ξ_1 and ξ_2 .. 220
15.6 Summary ... 223

Bibliography ... 223

16. Variance and Volatility Swaps for Volatilities Driven by Fractional Brownian Motion 225
16.1 Introduction ... 225
16.2 Variance and Volatility Swaps ... 226
16.3 Fractional Brownian Motion and Financial Markets with Long-Range Dependence .. 227
16.3.1 Definition and Some Properties of Fractional Brownian Motion .. 227
16.3.2 How to Model Long-Range Dependence on Financial Market .. 228
16.4 Modeling of Financial Markets with Stochastic Volatilities Driven by Fractional Brownian Motion (fBm) 229
16.4.1 Markets with Stochastic Volatility Driven by Fractional Ornstein-Uhlenbeck Process .. 230
16.4.2 Markets with Stochastic Volatility Driven by Fractional Vasicek Process .. 230
16.4.3 Markets with Stochastic Volatility Driven by Geometric Fractional Brownian Motion ... 231
16.4.4 Markets with Stochastic Volatility Driven by Fractional Continuous-Time GARCH Process 231
16.5 Pricing of Variance Swaps ... 231
16.5.1 Variance Swaps for Markets with Stochastic Volatility Driven by Fractional Ornstein-Uhlenbeck Process 232
16.5.2 Variance Swaps for Markets with Stochastic Volatility Driven by Fractional Vasicek Process 232
16.5.3 Variance Swaps for Markets with Stochastic Volatility Driven by Geometric fBm .. 233
16.5.4 Variance Swaps for Markets with Stochastic Volatility Driven by Fractional Continuous-Time GARCH Process 233
16.6 Pricing of Volatility Swaps .. 234
16.6.1 Volatility Swaps for Markets with Stochastic Volatility Driven by Fractional Ornstein-Uhlenbeck Process 235
16.6.2 Volatility Swaps for Markets with Stochastic Volatility Driven by Fractional Vasicek Process 236
16.6.3 Volatility Swaps for Markets with Stochastic Volatility Driven by Geometric fBm .. 236
16.6.4 Volatility Swaps for Markets with Stochastic Volatility Driven by Fractional Continuous-Time GARCH Process 237
16.7 Discussion: Asymptotic Results for the Pricing of Variance Swaps with Zero Risk-Free Rate when the Expiration Date Increases ... 238
16.8 Summary .. 239

Bibliography .. 239

17.1 Introduction .. 241
17.2 Mean-Reverting Stochastic Volatility Model (MRSVM) 243
 17.2.1 Explicit Solution of MRSVM 244
 17.2.2 Some Properties of the Process $\tilde{W}(\phi_t^{-1})$ 244
 17.2.3 Explicit Expression for the Process $\tilde{W}(\phi_t^{-1})$ 245
 17.2.4 Some Properties of the Mean-Reverting Stochastic Volatility $\sigma^2(t)$: First Two Moments, Variance and Covariation 246
17.3 Variance Swap for MRSVM .. 247
17.4 Volatility Swap for MRSVM .. 247
17.5 Mean-Reverting Risk-Neutral Stochastic Volatility Model 249
 17.5.1 Risk-Neutral Stochastic Volatility Model (SVM) 249
 17.5.2 Variance and Volatility Swaps for Risk-Neutral SVM ... 250
 17.5.3 Numerical Example: AECO Natural GAS Index (1 May 1998–30 April 1999) ... 250
17.6 Summary .. 252

Bibliography .. 252

18. Explicit Option Pricing Formula for a Mean-Reverting Asset in Energy Markets .. 255

18.1 Introduction .. 255
18.2 Mean-Reverting Asset Model (MRAM) 256
18.3 Explicit Option Pricing Formula for European Call Option for MRAM under Physical Measure 256
 18.3.1 Explicit Solution of MRAM 256
 18.3.2 Properties of the Process $\tilde{W}(\phi_t^{-1})$ 257
 18.3.3 Explicit Expression for the Process $\tilde{W}(\phi_t^{-1})$ 258
 18.3.4 Some Properties of the Mean-Reverting Asset S_t 259
 18.3.5 Explicit Option Pricing Formula for European Call Option for MRAM under Physical Measure 260
18.4 Mean-Reverting Risk-Neutral Asset Model (MRRNAM) 263
18.5 Explicit Option Pricing Formula for European Call Option for MRRNAM

18.5.1 Explicit Solution for the Mean-Reverting Risk-Neutral Asset Model

18.5.2 Some Properties of the Process $\tilde{W}^*((\phi_t)^{-1})$

18.5.3 Explicit Expression for the Process $\tilde{W}^*(\phi_t^{-1})$

18.5.4 Some Properties of the Mean-Reverting Risk-Neutral Asset S_t

18.5.5 Explicit Option Pricing Formula for European Call Option for MRAM under Risk-Neutral Measure

18.5.6 Black-Scholes Formula Follows: $L^* = 0$ and $a^* = -r$

18.6 Numerical Example: AECO Natural GAS Index (1 May 1998-30 April 1999)

18.7 Summary

Bibliography

19. Forward and Futures in Energy Markets: Multi-Factor Lévy Models

19.1 Introduction

19.2 α-Stable Lévy Processes and Their Properties

19.2.1 Lévy Processes

19.2.2 Lévy-Khintchine Formula and Lévy-Itô Decomposition for Lévy Processes $L(t)$

19.2.3 α-Stable Distributions and Lévy Processes

19.3 Stochastic Differential Equations Driven by α-Stable Lévy Processes

19.3.1 One-Factor α-Stable Lévy Models

19.3.2 Multi-Factor α-Stable Lévy Models

19.4 Change of Time Method (CTM) for SDEs Driven by Lévy Processes

19.4.1 Solutions of One-Factor Lévy Models using the CTM

19.4.2 Solution of Multi-Factor Lévy Models using CTM

19.5 Applications in Energy Markets

19.5.1 Energy Forwards and Futures

19.5.2 Gaussian- and Lévy-Based SABR/LIBOR Market Models

19.6 Summary

Bibliography

20. Generalization of Black-76 Formula: Markov-Modulated Volatility

20.1 Introduction

20.2 Generalization of Black-76 Formula with Markov-Modulated Volatility
20.2.1 Black-76 Formula .. 286
20.2.2 Pricing Options for Markov-Modulated Markets 287
20.2.3 Proof of Theorem 20.3 292
20.2.4 Proof of Theorem 20.5 293
20.3 Numerical Results for Synthetic Data 293
20.3.1 Case Without Jumps 293
20.3.2 Case with Jumps 293
20.4 Applications: Data from Nordpool 296
20.5 Summary .. 298
Bibliography ... 299

Index ... 301