MODELING AND PRICING IN FINANCIAL MARKETS FOR WEATHER DERIVATIVES

Fred Espen Benth
University of Oslo, Norway

Jūratė Šaltytė Benth
University of Oslo, Norway
Contents

Preface

1. Financial markets for weather
 1.1 The use of weather derivatives 1
 1.2 Markets for weather derivatives 4
 1.2.1 Temperature derivatives 4
 1.2.2 Derivatives on wind speed 7
 1.2.3 Precipitation derivatives 8
 1.2.4 Other weather derivatives 9
 1.3 A brief outlook of the monograph 11

Statistics of weather

2. Data description and exploratory analysis 17
 2.1 Data ... 17
 2.2 Temperature ... 18
 2.3 Wind .. 19
 2.4 Precipitation .. 22
 2.5 Spatial statistics and spatial-temporal modelling 24
 2.6 Stochastic weather modelling – literature overview 29
 2.6.1 Temperature 30
 2.6.2 Wind .. 31
 2.6.3 Precipitation 33

3. Spatial-temporal modelling 35
 3.1 The modelling approach 35
3.2 Spatial-temporal model for temperature and wind speed 37
 3.2.1 Marginal modelling of temperature and wind speed 39
 3.2.2 Spatial modelling of temperature and wind speed 40
 3.2.3 Estimation of the marginal temperature model . 40
 3.2.4 Estimation of spatial temperature model . . 48
 3.2.5 A critical view on temporal temperature modelling 51
 3.2.6 Estimation of wind speed model 54

3.3 Temporal modelling of precipitation 66
 3.3.1 Estimation of precipitation time series model . . 67
 3.3.2 Validation of precipitation time series model . 70

Weather derivatives 75

4. Continuous-time models for temperature and wind speed 77
 4.1 CARMA models 77
 4.2 Simulation of CARMA processes 82
 4.3 Linking CARMA to ARMA 85
 4.4 Recovering the states I: the Kalman filter 88
 4.5 Recovering the states II: an approxmative L^1-filter 91
 4.6 CARMA models for temperature and wind speed 96
 4.6.1 A model for temperature 97
 4.6.2 A model for wind speed 99
 4.7 Speed of reversion to the mean: the half-life 103

5. Pricing of forward contracts on temperature and wind speed 107
 5.1 Theory on pricing forwards 107
 5.1.1 Pricing by burn analysis 110
 5.2 A structure preserving class of measure changes 111
 5.3 Pricing temperature forwards 118
 5.4 Analysis of temperature futures prices 124
 5.4.1 Temperature futures prices and the states of tempera-
 ture ... 124
 5.4.2 The theoretical risk premium of temperature ... 128
 5.4.3 The Samuelson effect 132
 5.5 Pricing wind speed forwards 134

6. Extensions of temperature and wind speed models 139
 6.1 Stochastic temperature volatility 139
6.2 Brownian semistationary processes ... 143
6.3 Fractional models ... 147

7. Options on temperature and wind ... 157
7.1 Options on temperature futures ... 157
7.2 Options on wind speed futures ... 166
7.3 Geographical hedging .. 170
7.3.1 A simple spatial-temporal model for temperature 172
7.3.2 Computation of the optimal geographical hedge 174

8. Precipitation derivatives .. 179
8.1 A continuous-time model for precipitation 179
8.1.1 A class of independent increment processes 180
8.1.2 A stochastic model of precipitation 182
8.2 Pricing derivatives on precipitation ... 188
8.2.1 The Esscher transform for independent increment processes 189
8.2.2 Pricing ... 192

9. Utility-based approaches to pricing weather derivatives 197
9.1 Indifference pricing ... 197
9.1.1 Application to the pricing of rainfall derivatives 209
9.2 Fair pricing by benchmarking to a reference index 214
9.3 Pricing by marginal utility .. 216
9.4 The equilibrium approach by Cao and Wei 226

Appendix A List of abbreviations .. 229

Bibliography ... 231

Index .. 241