Time Series Analysis by State Space Methods

Second Edition

J. Durbin
London School of Economics
and Political Science
and University College London

S. J. Koopman
Vrije Universiteit Amsterdam

OXFORD UNIVERSITY PRESS
Contents

2.8 Forecasting 30
2.8.1 Illustration 31
2.9 Initialisation 32
2.10 Parameter estimation 34
2.10.1 Loglikelihood evaluation 34
2.10.2 Concentration of loglikelihood 36
2.10.3 Illustration 37
2.11 Steady state 37
2.12 Diagnostic checking 38
2.12.1 Diagnostic tests for forecast errors 38
2.12.2 Detection of outliers and structural breaks 39
2.12.3 Illustration 40
2.13 Exercises 41

3. Linear state space models 43
3.1 Introduction 43
3.2 Univariate structural time series models 44
3.2.1 Trend component 44
3.2.2 Seasonal component 45
3.2.3 Basic structural time series model 46
3.2.4 Cycle component 48
3.2.5 Explanatory variables and intervention effects 49
3.2.6 STAMP 51
3.3 Multivariate structural time series models 51
3.3.1 Homogeneous models 51
3.3.2 Common levels 52
3.3.3 Latent risk model 52
3.4 ARMA models and ARIMA models 53
3.5 Exponential smoothing 57
3.6 Regression models 60
3.6.1 Regression with time-varying coefficients 60
3.6.2 Regression with ARMA errors 60
3.7 Dynamic factor models 61
3.8 State space models in continuous time 62
3.8.1 Local level model 63
3.8.2 Local linear trend model 64
3.9 Spline smoothing 66
3.9.1 Spline smoothing in discrete time 66
3.9.2 Spline smoothing in continuous time 68
3.10 Further comments on state space analysis 69
3.10.1 State space versus Box-Jenkins approaches 69
3.10.2 Benchmarking 71
3.10.3 Simultaneous modelling of series from different sources 73
3.11 Exercises 74
4. Filtering, smoothing and forecasting 76
 4.1 Introduction 76
 4.2 Basic results in multivariate regression theory 77
 4.3 Filtering 82
 4.3.1 Derivation of the Kalman filter 82
 4.3.2 Kalman filter recursion 85
 4.3.3 Kalman filter for models with mean adjustments 85
 4.3.4 Steady state 86
 4.3.5 State estimation errors and forecast errors 86
 4.4 State smoothing 87
 4.4.1 Introduction 87
 4.4.2 Smoothed state vector 88
 4.4.3 Smoothed state variance matrix 90
 4.4.4 State smoothing recursion 91
 4.4.5 Updating smoothed estimates 91
 4.4.6 Fixed-point and fixed-lag smoothers 92
 4.5 Disturbance smoothing 93
 4.5.1 Smoothed disturbances 93
 4.5.2 Smoothed disturbance variance matrices 95
 4.5.3 Disturbance smoothing recursion 96
 4.6 Other state smoothing algorithms 96
 4.6.1 Classical state smoothing 96
 4.6.2 Fast state smoothing 97
 4.6.3 The Whittle relation between smoothed estimates 98
 4.6.4 Two filter formula for smoothing 98
 4.7 Covariance matrices of smoothed estimators 100
 4.8 Weight functions 104
 4.8.1 Introduction 104
 4.8.2 Filtering weights 105
 4.8.3 Smoothing weights 106
 4.9 Simulation smoothing 107
 4.9.1 Simulation smoothing by mean corrections 107
 4.9.2 Simulation smoothing for the state vector 108
 4.9.3 de Jong-Shephard method for simulation of disturbances 109
 4.10 Missing observations 110
 4.11 Forecasting 112
 4.12 Dimensionality of observational vector 113
 4.13 Matrix formulations of basic results 114
 4.13.1 State space model in matrix form 114
 4.13.2 Matrix expression for densities 115
 4.13.3 Filtering in matrix form: Cholesky decomposition 116
 4.13.4 Smoothing in matrix form 118
 4.13.5 Matrix expressions for signal 119
 4.13.6 Simulation smoothing 120
 4.14 Exercises 121
5. Initialisation of filter and smoother 123
 5.1 Introduction 123
 5.2 The exact initial Kalman filter 126
 5.2.1 The basic recursions 126
 5.2.2 Transition to the usual Kalman filter 129
 5.2.3 A convenient representation 130
 5.3 Exact initial state smoothing 130
 5.3.1 Smoothed mean of state vector 130
 5.3.2 Smoothed variance of state vector 132
 5.4 Exact initial disturbance smoothing 134
 5.5 Exact initial simulation smoothing 135
 5.5.1 Modifications for diffuse initial conditions 135
 5.5.2 Exact initial simulation smoothing 136
 5.6 Examples of initial conditions for some models 136
 5.6.1 Structural time series models 136
 5.6.2 Stationary ARMA models 137
 5.6.3 Nonstationary ARIMA models 138
 5.6.4 Regression model with ARMA errors 140
 5.6.5 Spline smoothing 141
 5.7 Augmented Kalman filter and smoother 141
 5.7.1 Introduction 141
 5.7.2 Augmented Kalman filter 141
 5.7.3 Filtering based on the augmented Kalman filter 142
 5.7.4 Illustration: the local linear trend model 144
 5.7.5 Comparisons of computational efficiency 145
 5.7.6 Smoothing based on the augmented Kalman filter 146

6. Further computational aspects 147
 6.1 Introduction 147
 6.2 Regression estimation 147
 6.2.1 Introduction 147
 6.2.2 Inclusion of coefficient vector in state vector 148
 6.2.3 Regression estimation by augmentation 148
 6.2.4 Least squares and recursive residuals 150
 6.3 Square root filter and smoother 150
 6.3.1 Introduction 150
 6.3.2 Square root form of variance updating 151
 6.3.3 Givens rotations 152
 6.3.4 Square root smoothing 153
 6.3.5 Square root filtering and initialisation 154
 6.3.6 Illustration: local linear trend model 154
 6.4 Univariate treatment of multivariate series 155
 6.4.1 Introduction 155
 6.4.2 Details of univariate treatment 155
6.4.3 Correlation between observation equations 158
6.4.4 Computational efficiency 158
6.4.5 Illustration: vector splines 159

6.5 Collapsing large observation vectors 161
6.5.1 Introduction 161
6.5.2 Collapse by transformation 162
6.5.3 A generalisation of collapsing by transformation 163
6.5.4 Computational efficiency 164

6.6 Filtering and smoothing under linear restrictions 164

6.7 Computer packages for state space methods 165
6.7.1 Introduction 165
6.7.2 $SsfPack$ 165
6.7.3 The basic $SsfPack$ functions 166
6.7.4 The extended $SsfPack$ functions 166
6.7.5 Illustration: spline smoothing 167

Maximum likelihood estimation of parameters 170
7.1 Introduction 170

7.2 Likelihood evaluation 170
7.2.1 Loglikelihood when initial conditions are known 170
7.2.2 Diffuse loglikelihood 171
7.2.3 Diffuse loglikelihood via augmented Kalman filter 173
7.2.4 Likelihood when elements of initial state vector are fixed but unknown 174
7.2.5 Likelihood when a univariate treatment of multivariate series is employed 174
7.2.6 Likelihood when the model contains regression effects 175
7.2.7 Likelihood when large observation vector is collapsed 176

7.3 Parameter estimation 177
7.3.1 Introduction 177
7.3.2 Numerical maximisation algorithms 177
7.3.3 The score vector 179
7.3.4 The EM algorithm 182
7.3.5 Estimation when dealing with diffuse initial conditions 184
7.3.6 Large sample distribution of estimates 185
7.3.7 Effect of errors in parameter estimation 186

7.4 Goodness of fit 187
7.5 Diagnostic checking 188

Illustrations of the use of the linear model 190
8.1 Introduction 190
8.2 Structural time series models 190
8.3 Bivariate structural time series analysis 195
8.4 Box-Jenkins analysis 198
8.5 Spline smoothing 200
8.6 Dynamic factor analysis 202
PART II NON-GAUSSIAN AND NONLINEAR STATE SPACE MODELS

9. Special cases of nonlinear and non-Gaussian models 209
 9.1 Introduction 209
 9.2 Models with a linear Gaussian signal 209
 9.3 Exponential family models 211
 9.3.1 Poisson density 211
 9.3.2 Binary density 212
 9.3.3 Binomial density 212
 9.3.4 Negative binomial density 213
 9.3.5 Multinomial density 213
 9.3.6 Multivariate extensions 214
 9.4 Heavy-tailed distributions 215
 9.4.1 t-distribution 215
 9.4.2 Mixture of normals 215
 9.4.3 General error distribution 215
 9.5 Stochastic volatility models 216
 9.5.1 Multiple volatility factors 217
 9.5.2 Regression and fixed effects 217
 9.5.3 Heavy-tailed disturbances 218
 9.5.4 Additive noise 218
 9.5.5 Leverage effects 219
 9.5.6 Stochastic volatility in mean 220
 9.5.7 Multivariate SV models 220
 9.5.8 Generalised autoregressive conditional heteroscedasticity 221
 9.6 Other financial models 222
 9.6.1 Durations: exponential distribution 222
 9.6.2 Trade frequencies: Poisson distribution 223
 9.6.3 Credit risk models 223
 9.7 Nonlinear models 224

10. Approximate filtering and smoothing 226
 10.1 Introduction 226
 10.2 The extended Kalman filter 226
 10.2.1 A multiplicative trend-cycle decomposition 228
 10.2.2 Power growth model 229
 10.3 The unscented Kalman filter 230
 10.3.1 The unscented transformation 230
 10.3.2 Derivation of the unscented Kalman filter 232
 10.3.3 Further developments of the unscented transform 233
 10.3.4 Comparisons between EKF and UKF 236
 10.4 Nonlinear smoothing 237
 10.4.1 Extended smoothing 237
 10.4.2 Unscented smoothing 237
10.5 Approximation via data transformation 238
 10.5.1 Partly multiplicative decompositions 239
 10.5.2 Stochastic volatility model 239
10.6 Approximation via mode estimation 240
 10.6.1 Mode estimation for the linear Gaussian model 240
 10.6.2 Mode estimation for model with linear Gaussian signal 241
 10.6.3 Mode estimation by linearisation 243
 10.6.4 Mode estimation for exponential family models 245
 10.6.5 Mode estimation for stochastic volatility model 245
10.7 Further advances in mode estimation 247
 10.7.1 Linearisation based on the state vector 247
 10.7.2 Linearisation for linear state equations 248
 10.7.3 Linearisation for nonlinear models 250
 10.7.4 Linearisation for multiplicative models 251
 10.7.5 An optimal property for the mode 252
10.8 Treatments for heavy-tailed distributions 254
 10.8.1 Mode estimation for models with heavy-tailed densities 254
 10.8.2 Mode estimation for state errors with \(\sim \)-distribution 255
 10.8.3 A simulation treatment for \(\sim \)-distribution model 255
 10.8.4 A simulation treatment for mixture of normals model 258
11. Importance sampling for smoothing 260
 11.1 Introduction 260
 11.2 Basic ideas of importance sampling 261
 11.3 Choice of an importance density 263
 11.4 Implementation details of importance sampling 264
 11.4.1 Introduction 264
 11.4.2 Practical implementation of importance sampling 264
 11.4.3 Antithetic variables 265
 11.4.4 Diffuse initialisation 266
 11.5 Estimating functions of the state vector 268
 11.5.1 Estimating mean functions 268
 11.5.2 Estimating variance functions 268
 11.5.3 Estimating conditional densities 269
 11.5.4 Estimating conditional distribution functions 270
 11.5.5 Forecasting and estimating with missing observations 270
 11.6 Estimating loglikelihood and parameters 271
 11.6.1 Estimation of likelihood 271
 11.6.2 Maximisation of loglikelihood 272
 11.6.3 Variance matrix of maximum likelihood estimate 273
 11.6.4 Effect of errors in parameter estimation 273
 11.6.5 Mean square error matrix due to simulation 273
 11.7 Importance sampling weights and diagnostics 275
12. Particle filtering 276
 12.1 Introduction 276
 12.2 Filtering by importance sampling 276
 12.3 Sequential importance sampling 278
 12.3.1 Introduction 278
 12.3.2 Recursions for particle filtering 279
 12.3.3 Degeneracy and resampling 280
 12.3.4 Algorithm for sequential importance sampling 282
 12.4 The bootstrap particle filter 283
 12.4.1 Introduction 283
 12.4.2 The bootstrap filter 283
 12.4.3 Algorithm for bootstrap filter 283
 12.4.4 Illustration: local level model for Nile data 284
 12.5 The auxiliary particle filter 287
 12.5.1 Algorithm for auxiliary filter 287
 12.5.2 Illustration: local level model for Nile data 288
 12.6 Other implementations of particle filtering 288
 12.6.1 Importance density from extended or unscented filter 288
 12.6.2 The local regression filter 291
 12.6.3 The mode equalisation filter 294
 12.7 Rao-Blackwellisation 296
 12.7.1 Introduction 296
 12.7.2 The Rao-Blackwellisation technique 297

13. Bayesian estimation of parameters 299
 13.1 Introduction 299
 13.2 Posterior analysis for linear Gaussian model 300
 13.2.1 Posterior analysis based on importance sampling 300
 13.2.2 Non-informative priors 302
 13.3 Posterior analysis for a nonlinear non-Gaussian model 303
 13.3.1 Posterior analysis of functions of the state vector 303
 13.3.2 Computational aspects of Bayesian analysis 305
 13.3.3 Posterior analysis of parameter vector 307
 13.4 Markov chain Monte Carlo methods 309

14. Non-Gaussian and nonlinear illustrations 312
 14.1 Introduction 312
 14.2 Nonlinear decomposition: UK visits abroad 312
 14.3 Poisson density: van drivers killed in Great Britain 314
 14.4 Heavy-tailed density: outlier in gas consumption 317