Managerial Decision Modeling with Spreadsheets

THIRD EDITION

NAGRAJ (RAJU) BALAKRISHNAN
Senior Associate Dean and Professor of Management
College of Business and Behavioral Science, Clemson University

BARRY RENDER
Charles Harwood Professor of Management Science Emeritus
Graduate School of Business, Rollins College

RALPH M. STAIR, JR.
Professor Emeritus
Florida State University

Pearson
CONTENTS

PREFACE

<table>
<thead>
<tr>
<th>Chapter 1 Introduction to Managerial Decision Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 What Is Decision Modeling?</td>
</tr>
<tr>
<td>1.2 Types of Decision Models</td>
</tr>
<tr>
<td>Deterministic Models</td>
</tr>
<tr>
<td>Probabilistic Models</td>
</tr>
<tr>
<td>Quantitative versus Qualitative Data</td>
</tr>
<tr>
<td>Using Spreadsheets in Decision Modeling</td>
</tr>
<tr>
<td>1.3 Steps Involved in Decision Modeling</td>
</tr>
<tr>
<td>Step 1: Formulation</td>
</tr>
<tr>
<td>Step 2: Solution</td>
</tr>
<tr>
<td>Step 3: Interpretation and Sensitivity Analysis</td>
</tr>
<tr>
<td>1.4 Spreadsheet Example of a Decision Model: Tax Computation</td>
</tr>
<tr>
<td>1.5 Spreadsheet Example of a Decision Model: Break-Even Analysis, 10</td>
</tr>
<tr>
<td>Using Goal Seek to Find the Break-Even Point</td>
</tr>
<tr>
<td>1.6 Possible Problems in Developing Decision Models</td>
</tr>
<tr>
<td>Defining the Problem</td>
</tr>
<tr>
<td>Developing a Model</td>
</tr>
<tr>
<td>Acquiring Input Data</td>
</tr>
<tr>
<td>Developing a Solution</td>
</tr>
<tr>
<td>Testing the Solution</td>
</tr>
<tr>
<td>Analyzing the Results</td>
</tr>
<tr>
<td>1.7 Implementation—Not Just the Final</td>
</tr>
<tr>
<td>Summary</td>
</tr>
<tr>
<td>Glossary</td>
</tr>
<tr>
<td>Discussion Questions and Problems</td>
</tr>
</tbody>
</table>

CHAPTER 2 Linear Programming Models: Graphical and Computer Methods

2.1 Introduction	20
2.2 Developing a Linear Programming Model	20
Formulation	21
Solution	21
Interpretation and Sensitivity Analysis	21
Properties of a Linear Programming Model	21
Basic Assumptions of a Linear Programming Model	22

2.3 Formulating a Linear Programming Problem	22
Linear Programming Example: Flair Furniture Company	23
Decision Variables	23
The Objective Function	23
Constraints	23
Nonnegativity Constraints and Integer Values	24
Guidelines to Developing a Correct LP Model	25
2.4 Graphical Solution of a Linear Programming Problem with Two Variables	26
Graphical Representation of Constraints	26
Feasible Region	29
Identifying an Optimal Solution by Using Level Lines	29
Identifying an Optimal Solution by Using All Corner Points	31
Comments on Flair Furniture's Optimal Solution	32
Extension to Flair Furniture's LP Model	32
2.5 A Minimization Linear Programming Problem	34
Holiday Meal Turkey Ranch	34
Graphical Solution of the Holiday Meal Turkey Ranch Problem	35
2.6 Special Situations in Solving Linear Programming Problems	36
Redundant Constraints	36
Infeasibility	37
Alternate Optimal Solutions	38
Unbounded Solution	39
2.7 Setting Up and Solving Linear Programming Problems Using Excel's Solver	40
Using Solver to Solve the Flair Furniture Problem	40
Changing Variable Cells	41
The Objective Cell	42
Constraints	43
Entering Information in Solver	44
Using Solver to Solve Flair Furniture Company's Modified Problem	49
Use of a Dummy Location to Balance an Unbalanced Model 171
Alternate Optimal Solutions 171
An Application of the Transportation Model: Facility Location 171
5.4 Transportation Models with Max-Min and Min-Max Objectives 172
5.5 Transshipment Model 174
Executive Furniture Company Example—Revisited 175
LP Formulation for Executive Furniture's Transshipment Model 175
Lopez Custom Outfits—A Larger Transshipment Example 176
LP Formulation for Lopez Custom Outfits Transshipment Model 177
5.6 Assignment Model 180
Fix-It Shop Example 180
Solving Assignment Models 181
LP Formulation for Fix-It Shop's Assignment Model 181
5.7 Maximal-Flow Model 183
Road System in Waukesha, Wisconsin 183
LP Formulation for Waukesha Road System's Maximal-Flow Model 184
5.8 Shortest-Path Model 186
Ray Design Inc. Example 187
LP Formulation for Ray Design Inc.'s Shortest-Path Model 187
5.9 Minimal-Spanning Tree Model 189
Lauderdale Construction Company Example 189
Summary 192
Glossary 192
Solved Problems 193
Discussion Questions and Problems 199
Case Study: Old Oregon Wood Store 207
Case Study: Custom Vans Inc. 208
Case Study: Binder's Beverage 209

CHAPTER 6 Integer, Goal, and Nonlinear Programming Models 211
6.1 Introduction 212
Integer Programming Models 212
Goal Programming Models 212
Nonlinear Programming Models 212
6.2 Models with General Integer Variables 213
Harrison Electric Company 213
Using Solver to Solve Models with General Integer Variables 215
How Are IP Models Solved? 216
Solver Options 218
Should We Include Integer Requirements in a Model? 219

6.3 Models with Binary Variables 220
Portfolio Selection at Simkin and Steinberg 220
Set Covering Problem at Sussex County 224
6.4 Mixed Integer Models: Fixed-Charge Problems 226
Locating a New Factory for Hardgrave Machine Company 227
6.5 Goal Programming Models 230
Goal Programming Example: Wilson Doors Company 231
Solving Goal Programming Models with Weighted Goals 233
Solving Goal Programming Models with Ranked Goals 237
Comparing the Two Approaches for Solving GP Models 241
6.6 Nonlinear Programming Models 241
Why Are NLP Models Difficult to Solve? 241
Solving Nonlinear Programming Models Using Solver 243
Computational Procedures for Nonlinear Programming Problems 248
Summary 248
Glossary 249
Solved Problems 249
Discussion Questions and Problems 255
Case Study: Schank Marketing Research 262
Case Study: Oakton River Bridge 263
Case Study: Easley Shopping Center 264

CHAPTER 7 Project Management 267
7.1 Introduction 268
Phases in Project Management 268
Use of Software Packages in Project Management 270
7.2 Project Networks 271
Identifying Activities 271
Identifying Activity Times and Other Resources 272
Project Management Example: General Foundry, Inc. 273
drawing the Project Network 274
7.3 Determining the Project Schedule 275
Forward Pass 276
Backward Pass 278
Calculating Slack Time and Identifying the Critical Path(s) 279
Total Slack Time versus Free Slack Time 280
7.4 Variability in Activity Times 282
PERT Analysis 282
Probability of Project Completion 284
Determining Project Completion Time for a Given Probability 286
Variability in Completion Time of Noncritical Paths 287
7.5 Managing Project Costs and Other Resources 287
Planning and Scheduling Project Costs: Budgeting Process 287
Monitoring and Controlling Project Costs 289
Managing Other Resources 291
7.6 Project Crashing 292
Crashing General Foundry's Project (Hand Calculations) 293
Crashing General Foundry's Project Using Linear Programming 295
Using Linear Programming to Determine Earliest and Latest Starting Times 297
7.7 Using Microsoft Project to Manage Projects 299
Creating a Project Schedule Using Microsoft Project 299
Tracking Progress and Managing Costs Using Microsoft Project 302
Summary 305
Glossary 305
Solved Problems 306
Discussion Questions and Problems 307
Case Study: Haygood Brothers Construction Company 315
Case Study: Family Planning Research Center of Nigeria 316

CHAPTER 8 Diagnostic Analysis 319
8.1 Introduction 320
8.2 The Five Steps in Diagnostic Analysis 320
Thompson Lumber Company Example 320
8.3 Types of Diagnostic Environments 322
8.4 Decision Making Under Uncertainty 323
Maximax Criterion 323
Maximin Criterion 323
Criterion of Realism (Hurwicz) 324
Equally Likely (Laplace) Criterion 324
Minimax Regret Criterion 324
Using Excel to Solve Decision-Making Problems under Uncertainty 325
8.5 Decision Making under Risk 327
Expected Monetary Value 327
Expected Opportunity Loss 328
Expected Value of Perfect Information 328
Using Excel to Solve Decision-Making Problems under Risk 329
8.6 Decision Trees 329
Folding Back a Decision Tree 332

8.7 Using TreePlan to Solve Decision Tree Problems with Excel 333
Loading TreePlan 333
Creating a Decision Tree Using TreePlan 333
8.8 Decision Trees for Multistage Decision-Making Problems 337
A Multistage Decision-Making Problem for Thompson Lumber 338
Expanded Decision Tree for Thompson Lumber 338
Folding Back the Expanded Decision Tree for Thompson Lumber 340
Expected Value of Sample Information 342
8.9 Estimating Probability Values Using Bayesian Analysis 342
Calculating Revised Probability Values 343
Potential Problems in Using Survey Results 345
8.10 Utility Theory 345
Measuring Utility and Constructing a Utility Curve 346
Utility as a Decision-Making Criterion 348
Summary 350
Glossary 350
Solved Problems 351
Discussion Questions and Problems 355
Case Study: Ski Right 362
Case Study: Blake Electronics 363

CHAPTER 9 Queuing Models 367
9.1 Introduction 368
9.2 Approaches for Analyzing Queues 368
9.3 Characteristics of a Queuing System 370
Arrival Characteristics 370
Queue Characteristics 372
Service Facility Characteristics 372
Measuring the Queue's Performance 375
Kendall's Notation for Queuing Systems 375
Variety of Queuing Models Studied Here 375
9.4 Single-Server Queuing System with Poisson Arrivals and Exponential Service Times (M/M/1 Model) 376
Assumptions of the M/M/1 Queuing Model 376
Operating Characteristic Equations for an M/M/1 Queuing System 377
Arnold's Muffler Shop Example 378
Using ExcelModules for Queuing Model Computations 378
Cost Analysis of the Queuing System 381
Increasing the Service Rate 381
9.5 Multiple-Server Queuing System with Poisson Arrivals and Exponential Service Times (M/M/s Model) 382
Assumptions of the M/M/s Queuing System 383
Operating Characteristic Equations for an M/M/s Queuing System 383
Arnold's Muffler Shop Revisited 383
Cost Analysis of the Queuing System 385
9.6 Single-Server Queuing System with Poisson Arrivals and Constant Service Times (M/D/1 Model) 385
Operating Characteristic Equations for an M/D/1 Queuing System 386
Garcia-Golding Recycling, Inc. 386
Cost Analysis of the Queuing System 386
9.7 Single-Server Queuing System with Poisson Arrivals and General Service Times (M/G/1 Model) 387
Operating Characteristic Equations for an M/G/1 Queuing System 387
Meetings with Professor Crino 388
Using Excel's Goal Seek to Identify Required Model Parameters 389
9.8 Multiple-Server Queuing System with Poisson Arrivals, Exponential Service Times, and Finite Population Size (M/M/S/oo/N Model) 390
Operating Characteristic Equations for the Finite Population Queuing System 391
Department of Commerce Example 392
Cost Analysis of the Queuing System 392
9.9 More Complex Queuing Systems 393
Summary 395
Glossary 395
Solved Problems 396
Discussion Questions and Problems 398
Case Study: New England Foundry 403
Case Study: Winter Park Hotel 404

CHAPTER 10 Simulation Modeling 407
10.1 Introduction 408
What Is Simulation? 408
Advantages and Disadvantages of Simulation 409
10.2 Monte Carlo Simulation 410
Step 1: Establish a Probability Distribution for Each Variable 410
Step 2: Simulate Values from the Probability Distributions 411
Step 3: Repeat the Process for a Series of Replications 413
10.3 Role of Computers in Simulation 413
Types of Simulation Software Packages 413
Random Generation from Some Common Probability Distributions Using Excel 414
10.4 Simulation Model to Compute Expected Profit 419
Setting Up the Model 419
Replication by Copying the Model 421
Replication Using Data Table 421
Analyzing the Results 423
10.5 Simulation Model of an Inventory Problem 424
Simkin's Hardware Store 425
Setting Up the Model 425
Computation of Costs 428
Replication Using Data Table 428
Analyzing the Results 429
Using Scenario Manager to Include Decisions in a Simulation Model 429
Analyzing the Results 431
10.6 Simulation Model of a Queuing Problem 432
Denton Savings Bank 432
Setting Up the Model 432
Replication Using Data Table 434
Analyzing the Results 434
10.7 Simulation Model of a Revenue Management Problem 434
Judith's Airport Limousine Service 435
Setting Up the Model 435
Replicating the Model Using Data Table and Scenario Manager 437
Analyzing the Results 438
10.8 Simulation Model of an Inventory Problem Using Crystal Ball 438
Reasons for Using Add-in Programs 438
Simulation of Simkin's Hardware Store Using Crystal Ball 439
Replicating the Model 441
Using Decision Table in Crystal Ball 443
10.9 Simulation Model of a Revenue Management Problem Using Crystal Ball 449
Setting Up the Model 449
10.10 Other Types of Simulation Models 452
Operational Gaming 452
Systems Simulation 452
Summary 453
Glossary 453
Solved Problems 454
Discussion Questions and Problems 463
Case Study: Alabama Airlines 472
Case Study: Abjar Transport Company 473

CHAPTER 11 Forecasting Models 475
11.1 Introduction 476
11.2 Types of Forecasts 476
Qualitative Models 476
Time-Series Models 477
Causal Models 477
11.3 Qualitative Forecasting Models 477
11.4 Measuring Forecast Error 478
11.5 Basic Time-Series Forecasting Models 479
Components of a Time Series 479
Stationary and Nonstationary Time-Series Data 480
Moving Averages 481
CONTENTS

11.6 Trend and Seasonality in Time-Series Data 492
Linear Trend Analysis 492
Scatter Chart 493
Least-Squares Procedure for Developing a Linear Trend Line 494
Seasonality Analysis 497

11.7 Decomposition of a Time Series 499
Multiplicative Decomposition Example: Sawyer Piano House 499
Using ExcelModules for Multiplicative Decomposition 500

11.8 Causal Forecasting Models: Simple and Multiple Regression 504
Causal Simple Regression Model 504
Causal Simple Regression Using ExcelModules 505
Causal Simple Regression Using Excel's Analysis ToolPak (Data Analysis) 510
Causal Multiple Regression Model 513
Causal Multiple Regression Using ExcelModules 514
Causal Multiple Regression Using Excel's Analysis ToolPak (Data Analysis) 517
Summary 521
Glossary 521
Solved Problems 522
Discussion Questions and Problems 526
Case Study: North-South Airline 533
Case Study: Forecasting Football Game Attendance at Southwestern University 533

12.4 Economic Order Quantity: Determining How Much to Order.
Ordering and Inventory Costs
Finding the Economic Order Quantity
Sumco Pump Company Example
Using ExcelModules for Inventory Model Computations
Purchase Cost of Inventory Items
Calculating the Ordering and Carrying Costs for a Given Value of \(Q \)
Sensitivity of the EOQ Formula

12.5 Reorder Point: Determining When to Order
Sumco Pump Company Example Revisited

12.6 Economic Production Quantity: Determining How Much to Produce
Finding the Economic Production Quantity
Brown Manufacturing Example
Length of the Production Cycle

12.7 Quantity Discount Models
Four Steps to Analyze Quantity Discount Models
Brass Department Store Example

12.8 Use of Safety Stock
Safety Stock with Known Stockout Costs
Safety Stock with Unknown Stockout Costs

12.9 ABC Analysis
Silicon Chips, Inc., Example
Summary
Glossary
Solved Problems
Discussion Questions and Problems
Case Study: Sturdivant Sound Systems
Case Study: Martin-Pullin Bicycle Corporation

APPENDIX A Probability Concepts and Applications 536

APPENDIX B Useful Excel 2010 Commands and Procedures for Installing ExcelModules 561

APPENDIX C Areas Under the Standard Normal Curve 574

APPENDIX D Brief Solutions to All Odd-Numbered End-of-Chapter Problems 575

INDEX 581