INTRODUCTION TO GAME THEORY
A BEHAVIORAL APPROACH

Kenneth C. Williams
MICHIGAN STATE UNIVERSITY

NEW YORK OXFORD
OXFORD UNIVERSITY PRESS
BRIEF CONTENTS

PREFACE

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>What Is Game Theory?</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>What Are Laboratory Experiments?</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Ordinal Utility Theory</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>Expected Utility Theory</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>Solving for a Nash Equilibrium in Normal Form Games</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>Classic Normal Form Games and Experiments</td>
<td>95</td>
</tr>
<tr>
<td>7</td>
<td>Solving for Mixed Strategy Equilibrium</td>
<td>112</td>
</tr>
<tr>
<td>8</td>
<td>Extensive Form Games and Backward Induction</td>
<td>126</td>
</tr>
<tr>
<td>9</td>
<td>Subgame Perfect Equilibrium</td>
<td>142</td>
</tr>
<tr>
<td>10</td>
<td>Imperfect and Incomplete Information Games</td>
<td>160</td>
</tr>
<tr>
<td>11</td>
<td>Bayesian Learning</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Chapter Problem Sets</td>
<td>201</td>
</tr>
</tbody>
</table>

APPENDIX

<table>
<thead>
<tr>
<th>APPENDIX 1</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solving Linear Equations</td>
<td>233</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPENDIX 2</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A Short History of Game Theory and Political Economy Experiments</td>
<td>235</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPENDIX 3</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Sincere vs. Strategic Voting in Agenda Games</td>
<td>246</td>
</tr>
</tbody>
</table>

REFERENCES

Glossary 261
Index 271