CONTENTS

<table>
<thead>
<tr>
<th>Foreword</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1 Improvement of Quality

1.1 Introduction 1
1.2 Building Knowledge and the Scientific Method 2
1.3 Defining Quality 4
1.4 Model for Improvement 9
1.5 Sequential Experimentation Using the PDSA Cycle 19
1.6 Summary 21

References 22
Exercises 23

CHAPTER 2 Principles for Design and Analysis of Planned Experiments

2.1 Introduction and Definitions 25
2.2 Types of Planned Experiments 29
2.3 Principles for Designing Analytic Studies .. 34
2.4 Tools for Experimentation 40
2.5 Form for Documentation of a Planned Experiment 51
2.6 Analysis of Data from Analytic Studies 54
2.7 Summary 58

References 58
Exercises 59
CHAPTER 3 Experiments with One Factor 63

3.1 General Approach to One-Factor Experiments 64
3.2 Using Run Charts for a One-Factor Design 68
3.3 Using Shewhart Charts for One-Factor Experiments 76
3.4 Paired-Comparison Experiments 79
3.5 Randomized Block Designs 85
3.6 Incomplete Block Designs 95
3.7 Summary .. 103
References .. 104
Exercises .. 104

CHAPTER 4 Experiments with More Than One Factor 109

4.1 Introduction to Factorial Designs 111
4.2 Design of Factorial Experiments 136
4.3 Advanced Topics in the Analysis of Factorial Experiments 142
4.4 Summary .. 156
References .. 156
Exercises .. 156

CHAPTER 5 Reducing the Size of Experiments 161

5.1 Introduction to Fractional Factorial Designs 163
5.2 Fractional Factorial Designs—Moderate Current Knowledge 170
5.3 Fractional Factorial Designs—Low Current Knowledge 183
5.4 Using Blocking to Design a Sequence of Experiments 192
5.5 Summary .. 202
Appendix: Development of Other Blocking Arrangements 204
CHAPTER 6 Evaluating Sources of Variation 211
6.1 Applications of Nested Designs 213
6.2 Planning and Analyzing an Experiment
with Nested Factors .. 221
6.3 More Complex Nested Designs 227
6.4 Summary .. 238
Appendix 6A: Calculation of Variance
Components .. 238
Appendix 6B: Calculating and Combining
Statistics (X, S, or R) 244
References .. 245
Exercises .. 245

CHAPTER 7 Sequential Experimentation—A Case Study 251
7.1 Improving a Milling Process—Getting
Started ... 251
7.2 The First Improvement Cycle: Current
Performance of the Mills 255
7.3 The Second PDSA Cycle: Sources
of Variation .. 261
7.4 The Third PDSA Cycle: Evaluating Mill
Cutter Vendors .. 263
7.5 The Fourth PDSA Cycle: Screening Process
Variables .. 265
7.6 The Fifth PDSA Cycle: Evaluate Effect of
Improvements on the Mill Process 269
7.7 The Sixth PDSA Cycle: Evaluating
Important Factors .. 270
7.8 The Seventh PDSA Cycle: Determining
Optimum Levels .. 275
7.9 The Eighth PDSA Cycle: Confirmation
of Improvements ... 277
7.10 Final Actions of the Mill Improvement Team 277
Exercises 280

CHAPTER 8 Using a Time Series Response Variable 281
8.1 Incorporating Experimental Patterns in a Time Series 281
8.2 Shewhart Charts .. 286
8.3 Designs for Sequential Experimentation Using Time Series Response Variables 295
8.4 Summary ... 303
References .. 303
Exercises ... 304

CHAPTER 9 Experiments with Factors at More Than Two Levels 309
9.1 Factorial Designs with More Than Two Levels 309
9.2 Augmenting 2^k Factorial Designs with Center Points 316
9.3 Three-Level Designs for Quantitative Factors 321
9.4 Experiments for Formulations or Mixtures 326
9.5 Experimental Designs for Complex Systems 337
9.6 Summary .. 341
References ... 342
Exercises ... 342

CHAPTER 10 Applications in Health Care 345
10.1 Introduction ... 346
10.2 Applications ... 350
10.3 Summary ... 365
References ... 366
Exercises ... 367