Modelling Under Risk and Uncertainty

An Introduction to Statistical, Phenomenological and Computational Methods

Etienne de Rocquigny

Ecole Centrale Paris, Université Paris-Saclay, France

WILEY

A John Wiley & Sons, Ltd., Publication
Contents

Preface xv
Acknowledgements xvii
Introduction and reading guide xix
Notation xxxiii
Acronyms and abbreviations xxxvii

1 Applications and practices of modelling, risk and uncertainty 1
 1.1 Protection against natural risk 1
 1.1.1 The popular ‘initiator/frequency approach’ 3
 1.1.2 Recent developments towards an ‘extended frequency approach’ 5
 1.2 Engineering design, safety and structural reliability analysis (SRA) 7
 1.2.1 The domain of structural reliability 8
 1.2.2 Deterministic safety margins and partial safety factors 9
 1.2.3 Probabilistic structural reliability analysis 10
 1.2.4 Links and differences with natural risk studies 11
 1.3 Industrial safety, system reliability and probabilistic risk assessment (PRA) 12
 1.3.1 The context of systems analysis 12
 1.3.2 Links and differences with structural reliability analysis 14
 1.3.3 The case of elaborate PRA (multi-state, dynamic) 16
 1.3.4 Integrated probabilistic risk assessment (IPRA) 17
 1.4 Modelling under uncertainty in metrology, environmental/sanitary assessment and numerical analysis 20
 1.4.1 Uncertainty and sensitivity analysis (UASA) 21
 1.4.2 Specificities in metrology/industrial quality control 23
 1.4.3 Specificities in environmental/health impact assessment 24
 1.4.4 Numerical code qualification (NCQ), calibration and data assimilation 25
 1.5 Forecast and time-based modelling in weather, operations research, economics or finance 27
 1.6 Conclusion: The scope for generic modelling under risk and uncertainty 28
 1.6.1 Similar and dissimilar features in modelling, risk and uncertainty studies 28
 1.6.2 Limitations and challenges motivating a unified framework 30
References 31
2 A generic modelling framework
2.1 The system under uncertainty
2.2 Decisional quantities and goals of modelling under risk and uncertainty
 2.2.1 The key concept of risk measure or quantity of interest
 2.2.2 Salient goals of risk/uncertainty studies and decision-making
2.3 Modelling under uncertainty: Building separate system and uncertainty models
 2.3.1 The need to go beyond direct statistics
 2.3.2 Basic system models
 2.3.3 Building a direct uncertainty model on variable inputs
 2.3.4 Developing the underlying epistemic/aleatory structure
 2.3.5 Summary
2.4 Modelling under uncertainty – the general case
 2.4.1 Phenomenological models under uncertainty and residual model error
 2.4.2 The model building process
 2.4.3 Combining system and uncertainty models into an integrated statistical estimation problem
 2.4.4 The combination of system and uncertainty models: A key information choice
 2.4.5 The predictive model combining system and uncertainty components
2.5 Combining probabilistic and deterministic settings
 2.5.1 Preliminary comments about the interpretations of probabilistic uncertainty models
 2.5.2 Mixed deterministic-probabilistic contexts
2.6 Computing an appropriate risk measure or quantity of interest and associated sensitivity indices
 2.6.1 Standard risk measures or q.i. (single-probabilistic)
 2.6.2 A fundamental case: The conditional expected utility
 2.6.3 Relationship between risk measures, uncertainty model and actions
 2.6.4 Double probabilistic risk measures
 2.6.5 The delicate issue of propagation/numerical uncertainty
 2.6.6 Importance ranking and sensitivity analysis
2.7 Summary: Main steps of the studies and later issues
Exercises
References

3 A generic tutorial example: Natural risk in an industrial installation
3.1 Phenomenology and motivation of the example
 3.1.1 The hydro component
 3.1.2 The system’s reliability component
 3.1.3 The economic component
 3.1.4 Uncertain inputs, data and expertise available
3.2 A short introduction to gradual illustrative modelling steps
 3.2.1 Step one: Natural risk standard statistics
 3.2.2 Step two: Mixing statistics and a QRA model
Exercises
References
3.2.3 Step three: Uncertainty treatment of a physical/engineering model (SRA) 91
3.2.4 Step four: Mixing SRA and QRA 91
3.2.5 Step five: Level-2 uncertainty study on mixed SRA-QRA model 94
3.2.6 Step six: Calibration of the hydro component and updating of risk measure 96
3.2.7 Step seven: Economic assessment and optimisation under risk and/or uncertainty 97

3.3 Summary of the example 99
Exercises 101
References 101

4 Understanding natures of uncertainty, risk margins and time bases for probabilistic decision-making 102

4.1 Natures of uncertainty: Theoretical debates and practical implementation 103
4.1.1 Defining uncertainty – ambiguity about the reference 103
4.1.2 Risk vs. uncertain – an impractical distinction 104
4.1.3 The aleatory/epistemic distinction and the issue of reducibility 105
4.1.4 Variability or uncertainty – the need for careful system specification 107
4.1.5 Other distinctions 109

4.2 Understanding the impact on margins of deterministic vs. probabilistic formulations 110
4.2.1 Understanding probabilistic averaging, dependence issues and deterministic maximisation and in the linear case 110
4.2.2 Understanding safety factors and quantiles in the monotonous case 114
4.2.3 Probability limitations, paradoxes of the maximal entropy principle 117
4.2.4 Deterministic settings and interval computation – uses and limitations 119
4.2.5 Conclusive comments on the use of probabilistic and deterministic risk measures 120

4.3 Handling time-cumulated risk measures through frequencies and probabilities 121
4.3.1 The underlying time basis of the state of the system 121
4.3.2 Understanding frequency vs. probability 124
4.3.3 Fundamental risk measures defined over a period of interest 126
4.3.4 Handling a time process and associated simplifications 128
4.3.5 Modelling rare events through extreme value theory 130

4.4 Choosing an adequate risk measure – decision-theory aspects 135
4.4.1 The salient goal involved 135
4.4.2 Theoretical debate and interpretations about the risk measure when selecting between risky alternatives (or controlling compliance with a risk target) 136
4.4.3 The choice of financial risk measures 137
6.3 The general structure of inverse algorithms: Residuals, identifiability, estimators, sensitivity and epistemic uncertainty 233
 6.3.1 The general estimation problem 233
 6.3.2 Relationship between observational data and predictive outputs for decision-making 233
 6.3.3 Common features to the distributions and estimation problems associated to the general structure 236
 6.3.4 Handling residuals and the issue of model uncertainty 238
 6.3.5 Additional comments on the model-building process 242
 6.3.6 Identifiability 243
 6.3.7 Importance factors and estimation accuracy 249
6.4 Specificities for parameter identification, calibration or data assimilation algorithms 251
 6.4.1 The BLUE algorithm for linear Gaussian parameter identification 251
 6.4.2 An extension with unknown variance: Multidimensional model calibration 254
 6.4.3 Generalisations to non-linear calibration 255
 6.4.4 Bayesian multidimensional model updating 256
 6.4.5 Dynamic data assimilation 257
6.5 Intrinsic variability identification 260
 6.5.1 A general formulation 260
 6.5.2 Linearised Gaussian case 261
 6.5.3 Non-linear Gaussian extensions 263
 6.5.4 Moment methods 264
 6.5.5 Recent algorithms and research fields 264
6.6 Conclusion: The modelling process and open statistical and computing challenges 267
Exercises 267
References 268

7 Computational methods for risk and uncertainty propagation 271
7.1 Classifying the risk measure computational issues 272
 7.1.1 Risk measures in relation to conditional and combined uncertainty distributions 273
 7.1.2 Expectation-based single probabilistic risk measures 275
 7.1.3 Simplified integration of sub-parts with discrete inputs 277
 7.1.4 Non-expectation based single probabilistic risk measures 280
 7.1.5 Other risk measures (double probabilistic, mixed deterministic-probabilistic) 281
7.2 The generic Monte-Carlo simulation method and associated error control 283
 7.2.1 Undertaking Monte-Carlo simulation on a computer 283
 7.2.2 Dual interpretation and probabilistic properties of Monte-Carlo simulation 285
 7.2.3 Control of propagation uncertainty: Asymptotic results 290
 7.2.4 Control of propagation uncertainty: Robust results for quantiles (Wilks formula) 292
 7.2.5 Sampling double-probabilistic risk measures 298
 7.2.6 Sampling mixed deterministic-probabilistic measures 299
7.3 Classical alternatives to direct Monte-Carlo sampling
 7.3.1 Overview of the computation alternatives to MCS
 7.3.2 Taylor approximation (linear or polynomial system models)
 7.3.3 Numerical integration
 7.3.4 Accelerated sampling (or variance reduction)
 7.3.5 Reliability methods (FORM-SORM and derived methods)
 7.3.6 Polynomial chaos and stochastic developments
 7.3.7 Response surface or meta-models

7.4 Monotony, regularity and robust risk measure computation
 7.4.1 Simple examples of monotonous behaviours
 7.4.2 Direct consequences of monotony for computing the risk measure
 7.4.3 Robust computation of exceedance probability in the monotonous case
 7.4.4 Use of other forms of system model regularity

7.5 Sensitivity analysis and importance ranking
 7.5.1 Elementary indices and importance measures and their equivalence in linear system models
 7.5.2 Sobol sensitivity indices
 7.5.3 Specificities of Boolean input/output events – importance measures in risk assessment
 7.5.4 Concluding remarks and further research

7.6 Numerical challenges, distributed computing and use of direct or adjoint differentiation of codes

Exercises
References

8 Optimising under uncertainty: Economics and computational challenges

8.1 Getting the costs inside risk modelling – from engineering economics to financial modelling
 8.1.1 Moving to costs as output variables of interest – elementary engineering economics
 8.1.2 Costs of uncertainty and the value of information
 8.1.3 The expected utility approach for risk aversion
 8.1.4 Non-linear transformations
 8.1.5 Robust design and alternatives mixing cost expectation and variance inside the optimisation procedure

8.2 The role of time – cash flows and associated risk measures
 8.2.1 Costs over a time period – the cash flow model
 8.2.2 The issue of discounting
 8.2.3 Valuing time flexibility of decision-making and stochastic optimisation

8.3 Computational challenges associated to optimisation
 8.3.1 Static optimisation (utility-based)
 8.3.2 Stochastic dynamic programming
 8.3.3 Computation and robustness challenges

8.4 The promise of high performance computing
 8.4.1 The computational load of risk and uncertainty modelling
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.2 The potential of high-performance computing</td>
<td>371</td>
</tr>
<tr>
<td>Exercises</td>
<td>372</td>
</tr>
<tr>
<td>References</td>
<td>372</td>
</tr>
<tr>
<td>9 Conclusion: Perspectives of modelling in the context of risk and uncertainty and further research</td>
<td>374</td>
</tr>
<tr>
<td>9.1 Open scientific challenges</td>
<td>374</td>
</tr>
<tr>
<td>9.2 Challenges involved by the dissemination of advanced modelling in the context of risk and uncertainty</td>
<td>377</td>
</tr>
<tr>
<td>References</td>
<td>377</td>
</tr>
<tr>
<td>10 Annexes</td>
<td>378</td>
</tr>
<tr>
<td>10.1 Annex 1 – refresher on probabilities and statistical modelling of uncertainty</td>
<td>378</td>
</tr>
<tr>
<td>10.1.1 Modelling through a random variable</td>
<td>378</td>
</tr>
<tr>
<td>10.1.2 The impact of data and the estimation uncertainty</td>
<td>380</td>
</tr>
<tr>
<td>10.1.3 Continuous probabilistic distributions</td>
<td>382</td>
</tr>
<tr>
<td>10.1.4 Dependence and stationarity</td>
<td>382</td>
</tr>
<tr>
<td>10.1.5 Non-statistical approach of probabilistic modelling</td>
<td>384</td>
</tr>
<tr>
<td>10.2 Annex 2 – comments about the probabilistic foundations of the uncertainty models</td>
<td>386</td>
</tr>
<tr>
<td>10.2.1 The overall space of system states and the output space</td>
<td>386</td>
</tr>
<tr>
<td>10.2.2 Correspondence to the Kaplan/Garrick risk analysis triplets</td>
<td>389</td>
</tr>
<tr>
<td>10.2.3 The model and model input space</td>
<td>389</td>
</tr>
<tr>
<td>10.2.4 Estimating the uncertainty model through direct data</td>
<td>391</td>
</tr>
<tr>
<td>10.2.5 Model calibration and estimation through indirect data and inversion techniques</td>
<td>393</td>
</tr>
<tr>
<td>10.3 Annex 3 – introductory reflections on the sources of macroscopic uncertainty</td>
<td>394</td>
</tr>
<tr>
<td>10.4 Annex 4 – details about the pedagogical example</td>
<td>397</td>
</tr>
<tr>
<td>10.4.1 Data samples</td>
<td>397</td>
</tr>
<tr>
<td>10.4.2 Reference probabilistic model for the hydro component</td>
<td>399</td>
</tr>
<tr>
<td>10.4.3 Systems reliability component – expert information on elementary failure probabilities</td>
<td>399</td>
</tr>
<tr>
<td>10.4.4 Economic component – cost functions and probabilistic model</td>
<td>403</td>
</tr>
<tr>
<td>10.4.5 Detailed results on various steps</td>
<td>404</td>
</tr>
<tr>
<td>10.5 Annex 5 – detailed mathematical demonstrations</td>
<td>414</td>
</tr>
<tr>
<td>10.5.1 Basic results about vector random variables and matrices</td>
<td>414</td>
</tr>
<tr>
<td>10.5.2 Differentiation results and solutions of quadratic likelihood maximisation</td>
<td>415</td>
</tr>
<tr>
<td>10.5.3 Proof of the Wilks formula</td>
<td>419</td>
</tr>
<tr>
<td>10.5.4 Complements on the definition and chaining of monotony</td>
<td>420</td>
</tr>
<tr>
<td>10.5.5 Proofs on level-2 quantiles of monotonous system models</td>
<td>422</td>
</tr>
<tr>
<td>10.5.6 Proofs on the estimator of adaptive Monte-Carlo under monotony (section 7.4.3)</td>
<td>423</td>
</tr>
<tr>
<td>References</td>
<td>426</td>
</tr>
<tr>
<td>Epilogue</td>
<td>427</td>
</tr>
<tr>
<td>Index</td>
<td>429</td>
</tr>
</tbody>
</table>