HANDBOOK OF

Volatility Models and Their Applications

Edited by

Luc Bauwens
Christian Hafner
Sebastien Laurent

WILEY
A John Wiley & Sons, Inc., Publication
Contents

Preface

XVII

Contributors

XIX

Volatility Models

1.1 Introduction, 1

1.2 GARCH, 1

1.2.1 Univariate GARCH, 1

1.2.1.1 Structure of GARCH Models, 3

1.2.1.2 Early GARCH Models, 5

1.2.1.3 Probability Distributions for z_t, 7

1.2.1.4 New GARCH Models, 9

1.2.1.5 Explanation of Volatility Clustering, 15

1.2.1.6 Literature and Software, 16

1.2.1.7 Applications of Univariate GARCH, 16

1.2.2 Multivariate GARCH, 18

1.2.2.1 Structure of MGARCH Models, 19

1.2.2.2 Conditional Correlations, 19

1.2.2.3 Factor Models, 23

1.3 Stochastic Volatility, 25

1.3.1 Leverage Effect, 26

1.3.2 Estimation, 27

1.3.3 Multivariate SV Models, 28

1.3.4 Model Selection, 30

1.3.5 Empirical Example: S&P 500, 31

1.3.6 Literature, 32

1.4 Realized Volatility, 33

1.4.1 Realized Variance, 33

1.4.1.1 Empirical Application, 40

1.4.2 Realized Covariance, 44
1.4.2.1 Realized Quadratic Covariation, 44
1.4.2.2 Realized Bipower Covariation, 44
Acknowledgments, 45

PART ONE

Autoregressive Conditional Heteroskedasticity and Stochastic Volatility

2 Nonlinear Models for Autoregressive Conditional Heteroskedasticity

2.1 Introduction, 49
2.2 The Standard GARCH Model, 50
2.3 Predecessors to Nonlinear GARCH Models, 51
2.4 Nonlinear ARCH and GARCH Models, 52
 2.4.1 Engle's Nonlinear GARCH Model, 52
 2.4.2 Nonlinear ARCH Model, 53
 2.4.3 Asymmetric Power GARCH Model, 53
 2.4.4 Smooth Transition GARCH Model, 54
 2.4.5 Double Threshold ARCH Model, 56
 2.4.6 Neural Network ARCH and GARCH Models, 57
 2.4.7 Time-Varying GARCH, 58
 2.4.8 Families of GARCH Models and their Probabilistic Properties, 59
2.5 Testing Standard GARCH Against Nonlinear GARCH, 60
 2.5.1 Size and Sign Bias Tests, 60
 2.5.2 Testing GARCH Against Smooth Transition GARCH, 61
 2.5.3 Testing GARCH Against Artificial Neural Network GARCH, 62
2.6 Estimation of Parameters in Nonlinear GARCH Models, 63
 2.6.1 Smooth Transition GARCH, 63
 2.6.2 Neural Network GARCH, 64
2.7 Forecasting with Nonlinear GARCH Models, 64
 2.7.1 Smooth Transition GARCH, 64
 2.7.2 Asymmetric Power GARCH, 66
2.8 Models Based on Multiplicative Decomposition of the Variance, 67
2.9 Conclusion, 68
Acknowledgments, 69
3 Mixture and Regime-Switching GARCH Models

3.1 Introduction, 71
3.2 Regime-Switching GARCH Models for Asset Returns, 73
 3.2.1 The Regime-Switching Framework, 73
 3.2.2 Modeling the Mixing Weights, 75
 3.2.3 Regime-Switching GARCH Specifications, 78
3.3 Stationarity and Moment Structure, 81
 3.3.1 Stationarity, 83
 3.3.2 Moment Structure, 87
3.4 Regime Inference, Likelihood Function, and Volatility Forecasting, 89
 3.4.1 Determining the Number of Regimes, 92
 3.4.2 Volatility Forecasts, 92
 3.4.3 Application of MS-GARCH Models to Stock Return Indices, 93
3.5 Application of Mixture GARCH Models to Density Prediction and Value-at-Risk Estimation, 97
 3.5.1 Value-at-Risk, 97
 3.5.2 Data and Models, 98
 3.5.3 Empirical Results, 99
3.6 Conclusion, 102
 Acknowledgments, 102

4 Forecasting High Dimensional Covariance Matrices

4.1 Introduction, 103
4.2 Notation, 104
4.3 Rolling Window Forecasts, 104
 4.3.1 Sample Covariance, 105
 4.3.2 Observable Factor Covariance, 105
 4.3.3 Statistical Factor Covariance, 106
 4.3.4 Equicorrelation, 107
 4.3.5 Shrinkage Estimators, 108
4.4 Dynamic Models, 109
 4.4.1 Covariance Targeting Scalar VEC, 109
 4.4.2 Flexible Multivariate GARCH, 110
 4.4.3 Conditional Correlation GARCH Models, 111
 4.4.4 Orthogonal GARCH, 113
 4.4.5 RiskMetrics, 114
 4.4.6 Alternative Estimators for Multivariate GARCH Models, 116
4.5 High Frequency Based Forecasts, 117
 4.5.1 Realized Covariance, 118
 4.5.2 Mixed-Frequency Factor Model Covariance, 119
 4.5.3 Regularization and Blocking Covariance, 119
4.6 Forecast Evaluation, 123
 4.6.1 Portfolio Constraints, 124
4.7 Conclusion, 125
Acknowledgments, 125

5 MEAN, VOLTILITY, AND SKEWNES SPILLOVERS IN EQUITY MARKETS 127
5.1 Introduction, 127
5.2 Data and Summary Statistics, 129
 5.2.1 Data, 129
 5.2.2 Time-Varying Skewness (Univariate Analysis), 132
 5.2.3 Spillover Models, 135
5.3 Empirical Results, 138
 5.3.1 Parameter Estimates, 138
 5.3.2 Spillover Effects in Variance and Skewness, 139
 5.3.2.1 Variance Ratios, 139
 5.3.2.2 Pattern and Size of Skewness Spillovers, 141
5.4 Conclusion, 144
Acknowledgments, 145

6 RELATING STOCHASTIC VOLTILITY ESTIMATION METHODS 147
6.1 Introduction, 147
6.2 Theory and Methodology, 149
 6.2.1 Quasi-Maximum Likelihood Estimation, 150
 6.2.2 Gaussian Mixture Sampling, 151
 6.2.3 Simulated Method of Moments, 152
 6.2.4 Methods Based on Importance Sampling, 153
 6.2.4.1 Approximating in the Basic IS Approach, 154
 6.2.4.2 Improving on IS with IIS, 155
 6.2.4.3 Alternative Efficiency Gains with EIS, 156
6.2.5 Alternative Sampling Methods: SSS and MMS, 158

6.3 Comparison of Methods, 160
6.3.1 Setup of Data-Generating Process and Estimation Procedures, 160
6.3.2 Parameter Estimates for the Simulation, 161
6.3.3 Precision of IS, 163
6.3.4 Precision of Bayesian Methods, 164

6.4 Estimating Volatility Models in Practice, 165
6.4.1 Describing Return Data of Goldman Sachs and IBM Stock, 165
6.4.2 Estimating SV Models, 167
6.4.3 Extracting Underlying Volatility, 168
6.4.4 Relating the Returns in a Bivariate Model, 169

6.5 Conclusion, 172

7 Multivariate Stochastic Volatility Models

7.1 Introduction, 175
7.2 MSV Model, 176
7.2.1 Model, 176
7.2.1.1 Likelihood Function, 177
7.2.1.2 Prior Distribution, 178
7.2.1.3 Posterior Distribution, 179
7.2.2 Bayesian Estimation, 179
7.2.2.1 Generation of \(\alpha \), 179
7.2.2.2 Generation of \(\phi \), 181
7.2.2.3 Generation of \(\Sigma \), 181
7.2.3 Multivariate-\(t \) Errors, 181
7.2.3.1 Generation of \(\nu \), 182
7.2.3.2 Generation of \(\lambda \), 183

7.3 Factor MSV Model, 183
7.3.1 Model, 183
7.3.1.1 Likelihood Function, 184
7.3.1.2 Prior and Posterior Distributions, 185
7.3.2 Bayesian Estimation, 185
7.3.2.1 Generation of \(\alpha, \phi, \) and \(\Sigma \), 186
7.3.2.2 Generation of \(f \), 187
7.3.2.3 Generation of \(\lambda \), 187
7.3.2.4 Generation of \(\beta \), 188
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.2.5</td>
<td>Generation of v</td>
<td>188</td>
</tr>
<tr>
<td>7.4</td>
<td>Applications to Stock Indices Returns</td>
<td>188</td>
</tr>
<tr>
<td>7.4.1</td>
<td>S&P 500 Sector Indices</td>
<td>188</td>
</tr>
<tr>
<td>7.4.2</td>
<td>MSV Model with Multivariate t Errors</td>
<td>189</td>
</tr>
<tr>
<td>7.4.2.1</td>
<td>Prior Distributions</td>
<td>189</td>
</tr>
<tr>
<td>7.4.2.2</td>
<td>Estimation Results</td>
<td>189</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Factor MSV Model</td>
<td>192</td>
</tr>
<tr>
<td>7.4.3.1</td>
<td>Prior Distributions</td>
<td>192</td>
</tr>
<tr>
<td>7.4.3.2</td>
<td>Estimation Results</td>
<td>192</td>
</tr>
<tr>
<td>7.5</td>
<td>Conclusion</td>
<td>195</td>
</tr>
<tr>
<td>7.6</td>
<td>Appendix: Sampling α in the MSV Model</td>
<td>195</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Single-Move Sampler</td>
<td>195</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Multi-move Sampler</td>
<td>196</td>
</tr>
</tbody>
</table>

8 Model Selection and Testing of Conditional and Stochastic Volatility Models

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>199</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Model Specifications</td>
<td>200</td>
</tr>
<tr>
<td>8.2</td>
<td>Model Selection and Testing</td>
<td>202</td>
</tr>
<tr>
<td>8.2.1</td>
<td>In-Sample Comparisons</td>
<td>202</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Out-of-Sample Comparisons</td>
<td>206</td>
</tr>
<tr>
<td>8.2.2.1</td>
<td>Direct Model Evaluation</td>
<td>206</td>
</tr>
<tr>
<td>8.2.2.2</td>
<td>Indirect Model Evaluation</td>
<td>209</td>
</tr>
<tr>
<td>8.3</td>
<td>Empirical Example</td>
<td>211</td>
</tr>
<tr>
<td>8.4</td>
<td>Conclusion</td>
<td>221</td>
</tr>
</tbody>
</table>

Part Two

Other Models and Methods

9 Multiplicative Error Models

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>225</td>
</tr>
<tr>
<td>9.2</td>
<td>Theory and Methodology</td>
<td>226</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Model Formulation</td>
<td>226</td>
</tr>
<tr>
<td>9.2.1.1</td>
<td>Specifications for μ_t</td>
<td>227</td>
</tr>
<tr>
<td>9.2.1.2</td>
<td>Specifications for ϵ_t</td>
<td>230</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Inference</td>
<td>230</td>
</tr>
<tr>
<td>9.2.2.1</td>
<td>Maximum Likelihood Inference</td>
<td>230</td>
</tr>
<tr>
<td>9.2.2.2</td>
<td>Generalized Method of Moments Inference</td>
<td>233</td>
</tr>
<tr>
<td>9.3</td>
<td>MEMs for Realized Volatility</td>
<td>235</td>
</tr>
<tr>
<td>9.4</td>
<td>MEM Extensions</td>
<td>242</td>
</tr>
</tbody>
</table>
9.4.1 Component Multiplicative Error Model, 242
9.4.2 Vector Multiplicative Error Model, 243
9.5 Conclusion, 247

10 Locally Stationary Volatility Modeling

10.1 Introduction, 249
10.2 Empirical Evidences, 251
 10.2.1 Structural Breaks, Nonstationarity, and Persistence, 251
 10.2.2 Testing Stationarity, 253
10.3 Locally Stationary Processes and their Time-Varying Autocovariance Function, 256
10.4 Locally Stationary Volatility Models, 260
 10.4.1 Multiplicative Models, 260
 10.4.2 Time-Varying ARCH Processes, 261
 10.4.3 Adaptive Approaches, 264
10.5 Multivariate Models for Locally Stationary Volatility, 266
 10.5.1 Multiplicative Models, 266
 10.5.2 Adaptive Approaches, 267
10.6 Conclusions, 267

Acknowledgments, 268

11.1 Introduction, 269
11.2 Nonparametric and Semiparametric Univariate Volatility Models, 271
 11.2.1 Stationary Volatility Models, 271
 11.2.1.1 The Simplest Nonparametric Volatility Model, 271
 11.2.1.2 Additive Nonparametric Volatility Model, 273
 11.2.1.3 Functional-Coefficient Volatility Model, 276
 11.2.1.4 Single-Index Volatility Model, 277
 11.2.1.5 Stationary Semiparametric ARCH (\(\infty\)) Models, 278
 11.2.1.6 Semiparametric Combined Estimator of Volatility, 279
11.2.1.7 Semiparametric Inference in GARCH-in-Mean Models, 280
11.2.2 Nonstationary Univariate Volatility Models, 281
11.2.3 Specification of the Error Density, 282
11.2.4 Nonparametric Volatility Density Estimation, 283
11.3 Nonparametric and Semiparametric Multivariate Volatility Models, 284
 11.3.1 Modeling the Conditional Covariance Matrix under Stationarity, 285
 11.3.1.1 Häfner, van Dijk, and Franses' Semiparametric Estimator, 285
 11.3.1.2 Long, Su, and Ullah's Semiparametric Estimator, 286
 11.3.1.3 Test for the Correct Specification of Parametric Conditional Covariance Models, 286
 11.3.2 Specification of the Error Density, 287
11.4 Empirical Analysis, 288
11.5 Conclusion, 291
Acknowledgments, 291

12 Copula-Based Volatility Models 293
12.1 Introduction, 293
12.2 Definition and Properties of Copulas, 294
 12.2.1 Sklar's Theorem, 295
 12.2.2 Conditional Copula, 296
 12.2.3 Some Commonly Used Bivariate Copulas, 296
 12.2.4 Copula-Based Dependence Measures, 298
12.3 Estimation, 300
 12.3.1 Exact Maximum Likelihood, 300
 12.3.2 IFM, 301
 12.3.3 Bivariate Static Copula Models, 301
12.4 Dynamic Copulas, 304
 12.4.1 Early Approaches, 305
 12.4.2 Dynamics Based on the DCC Model, 305
 12.4.3 Alternative Methods, 307
12.5 Value-at-Risk, 308
12.6 Multivariate Static Copulas, 310
 12.6.1 Multivariate Archimedean Copulas, 310
 12.6.2 Vines, 313
12.7 Conclusion, 315
PART THREE
Realized Volatility

13 Realized Volatility: Theory and Applications 319

13.1 Introduction, 319
13.2 Modeling Framework, 320
13.2.1 Efficient Price, 320
13.2.2 Measurement Error, 322
13.3 Issues in Handling Intraday Transaction Databases, 323
13.3.1 Which Price to Use?, 324
13.3.2 High Frequency Data Preprocessing, 326
13.3.3 How to and How Often to Sample?, 326
13.4 Realized Variance and Covariance, 329
13.4.1 Univariate Volatility Estimators, 329
13.4.1.1 Measurement Error, 330
13.4.2 Multivariate Volatility Estimators, 333
13.4.2.1 Measurement Error, 336
13.5 Modeling and Forecasting, 337
13.5.1 Time Series Models of (co) Volatility, 337
13.5.2 Forecast Comparison, 339
13.6 Asset Pricing, 340
13.6.1 Distribution of Returns Conditional on the Volatility Measure, 340
13.6.2 Application to Factor Pricing Model, 341
13.6.3 Effects of Algorithmic Trading, 342
13.6.4 Application to Option Pricing, 342
13.7 Estimating Continuous Time Models, 344

14 Likelihood-Based Volatility Estimators in the Presence of Market Microstructure Noise 347

14.1 Introduction, 347
14.2 Volatility Estimation, 349
14.2.1 Constant Volatility and Gaussian Noise Case: MLE, 349
14.2.2 Robustness to Non-Gaussian Noise, 351
14.2.3 Implementing Maximum Likelihood, 351
14.2.4 Robustness to Stochastic Volatility: QMLE, 352
14.2.5 Comparison with Other Estimators, 355
14.2.6 Random Sampling and Non-i.i.d. Noise, 356
14.3 Covariance Estimation, 356
14.4 Empirical Application: Correlation between Stock and Commodity Futures, 359
14.5 Conclusion, 360
Acknowledgments, 361

15 HAR MODELING FOR REALIZED VOLATILITY FORECASTING

15.1 Introduction, 363
15.2 Stylized Facts on Realized Volatility, 365
15.3 Heterogeneity and Volatility Persistence, 366
 15.3.1 Genuine Long Memory or Superposition of Factors?, 369
15.4 HAR Extensions, 370
 15.4.1 Jump Measures and Their Volatility Impact, 370
 15.4.2 Leverage Effects, 372
 15.4.3 General Nonlinear Effects in Volatility, 373
15.5 Multivariate Models, 375
15.6 Applications, 378
15.7 Conclusion, 381

16 FORECASTING VOLATILITY WITH MIDAS

16.1 Introduction, 383
16.2 MIDAS Regression Models and Volatility Forecasting, 384
 16.2.1 MIDAS Regressions, 384
 16.2.2 Direct Versus Iterated Volatility Forecasting, 386
 16.2.3 Variations on the Theme of MIDAS Regressions, 389
 16.2.4 Microstructure Noise and MIDAS Regressions, 390
16.3 Likelihood-Based Methods, 391
 16.3.1 Risk-Return Trade-Off, 391
 16.3.2 HYBRID GARCH Models, 393
 16.3.3 GARCH-MIDAS Models, 398
16.4 Multivariate Models, 399
16.5 Conclusion, 401

17 JUMPS

17.1 Introduction, 403
 17.1.1 Some Models Used in Finance and Our Framework, 403
 17.1.2 Simulated Models Used in This Chapter, 407
 17.1.3 Realized Variance and Quadratic Variation, 409
17.1.4 Importance of Disentangling, 410
17.1.5 Further Notation, 411

17.2 How to Disentangle: Estimators of Integrated Variance and Integrated Covariance, 411
17.2.1 Bipower Variation, 413
17.2.2 Threshold Estimator, 416
17.2.3 Threshold Bipower Variation, 419
17.2.4 Other Methods, 421
 17.2.4.1 Realized Quantile, 421
 17.2.4.2 MinRV and MedRV, 422
 17.2.4.3 Realized Outlyingness Weighted Variation, 422
 17.2.4.4 Range Bipower Variation, 423
 17.2.4.5 Generalization of the Realized Range, 424
 17.2.4.6 Duration-Based Variation, 425
 17.2.4.7 Irregularly Spaced Observations, 425
17.2.5 Comparative Implementation on Simulated Data, 426
17.2.6 Noisy Data, 427
17.2.7 Multivariate Assets, 432

17.3 Testing for the Presence of Jumps, 433
17.3.1 Confidence Intervals, 434
17.3.2 Tests Based on $\hat{IV}_n - RV_n$ or on $1 - \hat{IV}_n/RV_n$, 434
17.3.3 Tests Based on Normalized Returns, 436
17.3.4 PV-Based Tests, 439
 17.3.4.1 Remarks, 440
17.3.5 Tests Based on Signature Plots, 441
17.3.6 Tests Based on Observation of Option Prices, 442
 17.3.6.1 Remarks, 442
17.3.7 Indirect Test for the Presence of Jumps, 443
 17.3.7.1 In the Presence of Noise, 443
17.3.8 Comparisons, 443

17.4 Conclusions, 444

Acknowledgments, 445

18 Nonparametric Tests for Intraday Jumps: Impact of Periodicity and Microstructure Noise

18.1 Introduction, 447
18.2 Model, 449
18.3 Price Jump Detection Method, 450
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3.1</td>
<td>Estimation of the Noise Variance</td>
<td>451</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Robust Estimators of the Integrated Variance</td>
<td>451</td>
</tr>
<tr>
<td>18.3.3</td>
<td>Periodicity Estimation</td>
<td>452</td>
</tr>
<tr>
<td>18.3.4</td>
<td>Jump Test Statistics</td>
<td>454</td>
</tr>
<tr>
<td>18.3.5</td>
<td>Critical Value</td>
<td>454</td>
</tr>
<tr>
<td>18.4</td>
<td>Simulation Study</td>
<td>455</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Intraday Differences in the Value of the Test Statistics</td>
<td>455</td>
</tr>
<tr>
<td>18.4.2</td>
<td>Comparison of Size and Power</td>
<td>457</td>
</tr>
<tr>
<td>18.4.3</td>
<td>Simulation Setup</td>
<td>457</td>
</tr>
<tr>
<td>18.4.4</td>
<td>Results</td>
<td>458</td>
</tr>
<tr>
<td>18.5</td>
<td>Comparison on NYSE Stock Prices</td>
<td>460</td>
</tr>
<tr>
<td>18.6</td>
<td>Conclusion</td>
<td>462</td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>465</td>
</tr>
<tr>
<td>19.2</td>
<td>Notation</td>
<td>467</td>
</tr>
<tr>
<td>19.3</td>
<td>Single Forecast Evaluation</td>
<td>468</td>
</tr>
<tr>
<td>19.4</td>
<td>Loss Functions and the Latent Variable Problem</td>
<td>471</td>
</tr>
<tr>
<td>19.5</td>
<td>Pairwise Comparison</td>
<td>474</td>
</tr>
<tr>
<td>19.6</td>
<td>Multiple Comparison</td>
<td>477</td>
</tr>
<tr>
<td>19.7</td>
<td>Consistency of the Ordering and Inference on Forecast Performances</td>
<td>481</td>
</tr>
<tr>
<td>19.8</td>
<td>Conclusion</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>487</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>537</td>
</tr>
</tbody>
</table>