HEMISPHERIC TRANSPORT OF AIR POLLUTION 2010

PART A: OZONE AND PARTICULATE MATTER

AIR POLLUTION STUDIES No. 17

Edited by Frank Dentener, Terry Keating, and Hajime Akimoto

Prepared by the Task Force on Hemispheric Transport of Air Pollution acting within the framework of the Convention on Long-range Transboundary Air Pollution

UNITED NATIONS New York and Geneva, 2010
Chapter 1 Conceptual Overview of Hemispheric or Intercontinental Transport of Ozone and Particulate Matter ...1

1.1. Background and Introduction ... 1
1.2. Intercontinental or hemispheric transport of ozone and PM 2
1.2.1. Major ozone and PM sources .. 2
1.2.2. Major transport pathways ... 4
1.2.3. Chemistry and transformation processes 6
1.3. Key concepts for describing intercontinental transport processes ... 8
1.3.1. Global background and global baseline concentrations 8
1.3.2. Source Attribution and Source-Receptor Relationships 9
1.4. Major types of intercontinental transport processes 11
1.4.1. General circulation regimes .. 11
1.4.2. The mid-latitude cyclone airstreams 13
1.4.3. Deep convection ... 14
1.4.4. Diffuse or small scale atmospheric boundary layer venting 14
1.4.5. Slow, low altitude flow .. 15
1.4.6. Transport of polluted air masses into the atmospheric boundary layer of the receptor region 15
1.5. Impact of Present and Future Climate on Intercontinental Transport Processes ... 16
1.5.1. Present day climate variability and its impact on intercontinental transport processes 16
1.5.2. Climate Change and its effects on intercontinental transport processes ... 17
1.6. Chapter storylines .. 18
References .. 19

Chapter 2 Observational Evidence and Capabilities Related to Intercontinental Transport of Ozone and Particulate Matter .. 25

2.1. Introduction .. 25
2.2. Long-range Transport of Ozone and its Precursors 27
2.2.1. The View from Satellites .. 27
2.2.2. Direct Evidence for O\textsubscript{3} and Precursor Transport from In Situ and Lidar Measurements 28
2.2.3. Indirect evidence from long-term trends in baseline O\textsubscript{3} ... 32
2.2.4. Implications for Surface Ozone Air Quality in Receptor Regions ... 36
2.2.5. Summary, Remaining Uncertainties and Future Needs 38
2.3. Long-range Transport of Particulate Matter and its Precursors 39
2.3.1. Quantitative Estimates of Total Particulate Matter Transport from Satellites .. 39
2.3.2. In Situ and Lidar Observation of Particulate Matter Outflow from Continents ... 41
2.3.3. Observations of Particulate Matter in Continental Inflow 42
2.3.4. Trends in Surface site Observations of Particulate Matter 45
2.3.5. Implications for Surface Particulate Matter Air Quality in Receptor Regions ... 47
2.3.6. Summary, Remaining Uncertainties and Future Needs 48
2.4. Observational Evidence for Attribution of Source Regions

2.4.1. Meteorologically-based source attribution studies

2.4.2. Source attribution based on trace gas correlations and ratios

2.4.3. Aerosol source attribution based on use of trace elements and isotopes

2.4.4. Plume processing during long-range transport based on analysis of Lagrangian data and implications for global modelling of long-range pollutant transport

2.5. Research Needs

2.5.1. Surface Site Needs

2.5.2. Vertical Profiling Needs

2.5.3. Satellite Data Needs

2.5.4. Intensive Campaign Needs

2.5.5. Model evaluation against observations

References

Chapter 3 Emission Inventories and Projections

3.1. Introduction

3.2. Development of new emission datasets to study hemispheric transport of air pollution

3.2.1. EDGAR-HTAP emission inventory (2000-2005)

3.2.2. Historical emission inventory in support of RCP scenarios (1850-2000)

3.2.3. RCP scenarios (2000-2100)

3.2.4. Incorporating local knowledge into global emission inventories: RAPIDC

3.2.5. Uncertainties in emission estimates

3.3. Emissions from Natural Sources and Biomass Burning

3.3.1. Natural emissions

3.3.2. Biomass burning

3.4. Anthropogenic Emissions, 1850-2050

3.4.1. \(\text{SO}_2 \) emission trends

3.4.2. \(\text{NO}_x \) emission trends

3.4.3. \(\text{VOC} \) emission trends

3.4.4. BC emission trends

3.4.5. \(\text{CH}_4 \) emission trends

3.4.6. CO emission trends

3.4.7. \(\text{NH}_3 \) emission trends

3.4.8. OC emission trends

3.5. Evaluation of differences in emissions data: case study for Asia

3.5.1. Recent emission trends, 1980-2006

3.5.2. Future scenarios to 2030

3.6. Integration among emissions, modelling, and observations

3.6.1. Constraining emissions with satellite observations

3.6.2. Constraining emission inventories with observation data: Case studies in the United States

References

Chapter 4 Global and Regional Modelling

4.1. Overview

4.1.1. Modelling approaches

4.1.2. Model methods for quantifying source contributions to intercontinental transport

4.1.3. Role of coordinated model studies
4.2. Quantifying intercontinental transport of ozone and precursors .. 138
 4.2.1. Ozone in the troposphere .. 138
 4.2.2. Surface ozone ... 139
 4.2.3. Trends in surface ozone .. 141
 4.2.4. Source attribution .. 142
 4.2.5. Source-receptor relationships for surface ozone .. 143
 4.2.6. Policy-relevant metrics .. 149
 4.2.7. Interannual variability .. 151
 4.2.8. Influence of intercontinental transport through the depth of the troposphere 152
 4.2.9. Import/Export budgets from different regions ... 154
 4.2.10. Contribution to observed ozone trends .. 155
 4.2.11. Robustness of HTAP S/R Results .. 156

4.3. Quantifying intercontinental transport of aerosol .. 158
 4.3.1. Aerosol budgets and transport .. 158
 4.3.2. AEROCOM-HTAP aerosol-specific experiments .. 164
 4.3.3. Seasonal variation of surface aerosol concentrations .. 165
 4.3.4. Source attribution ... 165
 4.3.5. Linearity of source-receptor relationships ... 167
 4.3.6. Model sulphur trend evaluation ... 169
 4.3.7. Interannual variability and impacts of resolution on S/R relationships 169

4.4. Hemispheric Transport Influences on deposition .. 170
 4.4.1. Deposition of sulphur and reactive nitrogen, N .. 170
 4.4.2. S/R relationships ... 172
 4.4.3. The Arctic .. 172
 4.4.4. Attribution to source categories ... 173

4.5. Uncertainty in model estimates of intercontinental transport ... 175
 4.5.1. Uncertainty in model transport processes ... 175
 4.5.2. The influence of model resolution .. 177
 4.5.3. Uncertainty in model chemical mechanisms and natural emissions 180
 4.5.4. Summary of principal sources of model uncertainty and research needs 181

4.6. Future changes in S/R relationships .. 184
 4.6.1. Changes with future emissions ... 184
 4.6.2. Changes with future climate .. 187

References ... 190

Chapter 5 Impacts on Health, Ecosystems, and Climate ... 199

5.1. Impacts of Long-range Transport on Human Health .. 200
 5.1.1. Evidence for effects of ozone and PM on human health .. 200
 5.1.2. Quantified influences of long-range transport on human health 207
 5.1.3. Future changes in human health impacts due to LRT ... 215
 5.1.4. Major uncertainties and research needs ... 215

5.2. Impact of Long-range Transport on Ecosystems ... 216
 5.2.1. Evidence for effects of ozone and PM on ecosystems .. 216
 5.2.2. Quantified influences of ICT pollution on ecosystems .. 222
 5.2.3. The potential vulnerability of ecosystems to long-range transport of O3 227
 5.2.4. Interactions with climate change ... 230
 5.2.5. Interactions with other pollutants .. 233
5.3. Impact of Long-range Transport on Climate

5.3.1. Effects of ozone and particulate matter on global average radiative forcing

5.3.2. Radiative Forcing of Ozone and PM: Regional Extent and Effects of Varying Precursor Emissions

5.3.3. Relevance of Regional Forcings for Regional and Global Climate

5.3.4. Impacts of Long-Range Transport on Climate in the Arctic

5.3.5. Future Changes in Forcings

5.3.6. Future Research Needs

References

Chapter 6 Summary

6.1. Observational Evidence for Intercontinental Transport

6.2. Modelling Analyses of Intercontinental Transport

6.2.1. Source Attribution

6.2.2. Source-Receptor Sensitivity

6.3. The Impacts of Intercontinental Transport

6.4. Future Scenarios

6.5. Implications for International Policy

6.6. Further research and analysis needs

Key Challenges

Appendix

Appendix A Editors, Authors, & Reviewers