Econometric Methods for Labour Economics

Stephen Bazen
Contents

List of Figures	ix
List of Tables | x
Data Sources | xi

Introduction

1. The Use of Linear Regression in Labour Economics
 1.1 The Linear Regression Model—A Review of Some Basic Results | 5
 1.2 Specification Issues in the Linear Model | 10
 1.3 Using the Linear Regression Model in Labour Economics—the Mincer Earnings Equation | 20
 1.4 Concluding Remarks | 30

Appendix:
The Mechanics of Ordinary Least Squares Estimation | 32

2. Further Regression Issues in Labour Economics
 2.1 Decomposing Differences Between Groups—Oaxaca and Beyond | 35
 2.2 Quantile Regression and Earnings Decompositions | 42
 2.3 Regression with Panel Data | 44
 2.4 Estimating Standard Errors | 48
 2.5 Concluding Remarks | 51

3. Dummy and Ordinal Dependent Variables
 3.1 The Linear Model and Least Squares Estimation | 53
 3.2 Logit and Probit Models—A Common Set-up | 56
 3.3 Interpreting the Output | 61
 3.4 More Than Two Choices | 68
 3.5 Concluding Remarks | 74

4. Selectivity
 4.1 A First Approach—Truncation Bias and a Pile-up of Zeros | 77
 4.2 Sample Selection Bias—Missing Values | 79
Contents

4.3 Marginal Effects and Oaxaca Decompositions in Selectivity Models 84
4.4 The Roy Model—The Role of Comparative Advantage 87
4.5 The Normality Assumption 90
4.6 Concluding Remarks 91

Appendix:
1. The conditional expectation of the error term under truncation 93
2. The conditional expectation of the error term with sample selection 94
3. Marginal effects in the sample selection model 95
4. The conditional expectation of the error terms in two equations with selectivity bias 96

5. Duration Models 97
5.1 Analysing Completed Durations 100
5.2 Econometric Modelling of Spell Lengths 102
5.3 Censoring: Complete and Incomplete Durations 108
5.4 Modelling Issues with Duration Data 113
5.5 Concluding Remarks 117

Appendix:
1. The expected duration of completed spell is equal to the integral of the survival function 119
2. The integrated hazard function 119
3. The log likelihood function with discrete (grouped) duration data 120

6. Evaluation of Policy Measures 122
6.1 The Experimental Approach 123
6.2 The Quasi-experimental Approach—A Control Group can be Defined Exogenously 125
6.3 Evaluating Policies in a Non-experimental Context: The Role of Selectivity 131
6.4 Concluding Remarks 136

Appendix:
1. Derivation of the average treatment effect as an OLS estimator 138
2. Derivation of the Wald estimator 139

Conclusion 141

Bibliography 143
Index 147

viii