Financial Modeling, Actuarial Valuation and Solvency in Insurance
Contents

1 Introduction .. 1
 1.1 Full Balance Sheet Approach 3
 1.2 Solvency Considerations 4
 1.3 Further Modeling Issues 5
 1.4 Outline of This Book 6

Part I Financial Valuation Principles

2 State Price Deflators and Stochastic Discounting 11
 2.1 Zero Coupon Bonds and Term Structure of Interest Rates 11
 2.1.1 Motivation for Discounting 11
 2.1.2 Spot Rates and Term Structure of Interest Rates 12
 2.1.3 Estimating the Yield Curve 15
 2.2 Basic Discrete Time Stochastic Model 18
 2.2.1 Valuation at Time 0 19
 2.2.2 Interpretation of State Price Deflators 22
 2.2.3 Valuation at Time $t > 0$ 23
 2.3 Equivalent Martingale Measure 26
 2.3.1 Bank Account Numeraire 26
 2.3.2 Martingale Measure and the FTAP 27
 2.4 Market Price of Risk 31

3 Spot Rate Models ... 35
 3.1 General Gaussian Spot Rate Models 35
 3.2 One-Factor Gaussian Affine Term Structure Models 38
 3.3 Discrete Time One-Factor Vasicek Model 41
 3.3.1 Spot Rate Dynamics on a Yearly Grid 42
 3.3.2 Spot Rate Dynamics on a Monthly Grid 45
 3.3.3 Parameter Calibration in the One-Factor Vasicek Model . 47
 3.4 Conditionally Heteroscedastic Spot Rate Models 56
 3.5 Auto-Regressive Moving Average (ARMA) Spot Rate Models 60
 3.5.1 AR(1) Spot Rate Model 61
Contents

3.5.2 AR(p) Spot Rate Model ... 62
3.5.3 General ARMA Spot Rate Models 63
3.5.4 Parameter Calibration in ARMA Models 64
3.6 Discrete Time Multifactor Vasicek Model 65
3.6.1 Motivation for Multifactor Spot Rate Models 65
3.6.2 Multifactor Vasicek Model (with Independent Factors) 67
3.6.3 Parameter Estimation and the Kalman Filter 72
3.7 One-Factor Gamma Spot Rate Model 87
3.7.1 Gamma Affine Term Structure Model 87
3.7.2 Parameter Calibration in the Gamma Spot Rate Model 90
3.8 Discrete Time Black–Karasinski Model 92
3.8.1 Log-Normal Spot Rate Dynamics 92
3.8.2 Parameter Calibration in the Black–Karasinski Model 93
3.8.3 ARMA Extended Black–Karasinski Model 95

4 **Stochastic Forward Rate and Yield Curve Modeling** 97
4.1 General Discrete Time HJM Framework 98
4.2 Gaussian Discrete Time HJM Framework 100
4.2.1 General Gaussian Discrete Time HJM Framework 100
4.2.2 Two-Factor Gaussian HJM Model 102
4.2.3 Nelson–Siegel and Svensson HJM Framework 105
4.3 Yield Curve Modeling .. 106
4.3.1 Derivations from the Forward Rate Framework 106
4.3.2 Stochastic Yield Curve Modeling 109

Appendix Proofs of Chap. 4 ... 125

5 **Pricing of Financial Assets** ... 131
5.1 Pricing of Cash Flows .. 132
5.1.1 General Cash Flow Valuation in the Vasicek Model 132
5.1.2 Defaultable Coupon Bonds .. 135
5.2 Financial Market .. 137
5.2.1 A Log-Normal Example in the Vasicek Model 139
5.2.2 A First Asset-and-Liability Management Problem 143
5.3 Pricing of Derivative Instruments 146

Appendix Proofs of Chap. 5 ... 149

Part II
Actuarial Valuation and Solvency .. 155
6 **Actuarial and Financial Modeling** 155
6.1 Financial Market and Financial Filtration 155
6.2 Basic Actuarial Model .. 157
6.3 Improved Actuarial Model .. 164

7 **Valuation Portfolio** .. 169
7.1 Construction of the Valuation Portfolio 170
7.1.1 Financial Portfolios and Cash Flows 171
7.1.2 Construction of the VaPo .. 171
8 Protected Valuation Portfolio

8.1 Construction of the Protected Valuation Portfolio

8.2 Market-Value Margin

8.2.1 Risk-Adjusted Reserves

8.2.2 Claims Development Result of Risk-Adjusted Reserves

8.2.3 Fortuin–Kasteleyn–Ginibre (FKG) Inequality

8.2.4 Examples in Life Insurance

8.2.5 Example in Non-life Insurance

8.2.6 Further Probability Distortion Examples

8.3 Numerical Examples

8.3.1 Non-life Insurance Run-Off

8.3.2 Life Insurance Examples

9 Solvency

9.1 Risk Measures

9.1.1 Definition of (Conditional) Risk Measures

9.1.2 Examples of Risk Measures

9.2 Solvency and Acceptability

9.2.1 Definition of Solvency and Acceptability

9.2.2 Free Capital and Solvency Terminology

9.2.3 Insolvency

9.3 No Insurance Technical Risk

9.3.1 Theoretical ALM Solution and Free Capital

9.3.2 General Asset Allocations

9.3.3 Limited Liability Option

9.3.4 Margrabe Option

9.3.5 Hedging Margrabe Options

9.4 Inclusion of Insurance Technical Risk

9.4.1 Insurance Technical and Financial Result

9.4.2 Theoretical ALM Solution and Solvency

9.4.3 General ALM Problem and Insurance Technical Risk

9.4.4 Cost-of-Capital Loading and Dividend Payments

9.4.5 Risk Spreading and Law of Large Numbers

9.4.6 Limitations of the Vasicek Financial Model

9.5 Portfolio Optimization

9.5.1 Standard Deviation Based Risk Measure

9.5.2 Estimation of the Covariance Matrix
10 Selected Topics and Examples 337
 10.1 Extreme Value Distributions and Copulas 337
 10.2 Parameter Uncertainty 339
 10.2.1 Parameter Uncertainty for a Non-life Run-Off 339
 10.2.2 Modeling of Longevity Risk 352
 10.3 Cost-of-Capital Loading in Practice 356
 10.3.1 General Considerations 356
 10.3.2 Cost-of-Capital Loading Example 358
 10.4 Accounting Year Factors in Run-Off Triangles 366
 10.4.1 Model Assumptions 366
 10.4.2 Predictive Distribution 368
 10.5 Premium Liability Modeling 369
 10.5.1 Modeling Attritional Claims 371
 10.5.2 Modeling Large Claims 375
 10.5.3 Reinsurance ... 376
 10.6 Risk Measurement and Solvency Modeling 381
 10.6.1 Insurance Liabilities 381
 10.6.2 Asset Portfolio and Premium Income 385
 10.6.3 Cost Process and Other Risk Factors 387
 10.6.4 Accounting Condition and Acceptability 388
 10.6.5 Solvency Toy Model in Action 390
 10.7 Concluding Remarks ... 402

Part III Appendix

11 Auxiliary Considerations 407
 11.1 Helpful Results with Gaussian Distributions 407
 11.2 Change of Numeraire Technique 408
 11.2.1 General Changes of Numeraire 408
 11.2.2 Forward Measures and European Options on ZCBs 410
 11.2.3 European Options with Log-Normal Asset Prices 415

References .. 419

Index .. 427