Numerical Methods and Optimization in Finance

Manfred Gilli
University of Geneva and Swiss Finance Institute

Dietmar Maringer
University of Basel and University of Geneva

Enrico Schumann
VIP Value Investment Professionals AG, Switzerland
Contents

List of Algorithms xiii
Acknowledgements xv

1. Introduction 1
   1.1 About this book 1
   1.2 Principles 3
   1.3 On software 5
   1.4 On approximations and accuracy 9
   1.5 Summary: the theme of the book 14

Part One Fundamentals 15

2. Numerical analysis in a nutshell 17
   2.1 Computer arithmetic 17
      Representation of real numbers 17
      Machine precision 20
      Example of limitations of floating point arithmetic 20
   2.2 Measuring errors 21
   2.3 Approximating derivatives with finite differences 22
      Approximating first-order derivatives 22
      Approximating second-order derivatives 23
      Partial derivatives 23
      How to choose h 24
      Truncation error for forward difference 24
   2.4 Numerical instability and ill-conditioning 26
      Example of a numerically unstable algorithm 26
      Example of an ill-conditioned problem 27
   2.5 Condition number of a matrix 28
      Comments and examples 29
   2.6 A primer on algorithmic and computational complexity 31
      2.6.1 Criteria for comparison 31
      Order of complexity and classification 32
      Operation count for basic linear algebra operations 33

3. Linear equations and Least Squares problems 35
   Choice of method 36
   3.1 Direct methods 36
      3.1.1 Triangular systems 36
      3.1.2 LU factorization 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3</td>
<td>Cholesky factorization</td>
<td>40</td>
</tr>
<tr>
<td>3.1.4</td>
<td>QR decomposition</td>
<td>43</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Singular value decomposition</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Iterative methods</td>
<td>44</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Jacobi, Gauss–Seidel, and SOR</td>
<td>45</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Convergence of iterative methods</td>
<td>46</td>
</tr>
<tr>
<td>3.2.3</td>
<td>General structure of algorithms for iterative methods</td>
<td>48</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Block iterative methods</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>Sparse linear systems</td>
<td>53</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Tridiagonal systems</td>
<td>53</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Irregular sparse matrices</td>
<td>55</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Structural properties of sparse matrices</td>
<td>57</td>
</tr>
<tr>
<td>3.4</td>
<td>The Least Squares problem</td>
<td>60</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Method of normal equations</td>
<td>61</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Least Squares via QR factorization</td>
<td>64</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Least Squares via SVD decomposition</td>
<td>65</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Final remarks</td>
<td>67</td>
</tr>
<tr>
<td>4.</td>
<td>Finite difference methods</td>
<td>69</td>
</tr>
<tr>
<td>4.1</td>
<td>An example of a numerical solution</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>A first numerical approximation</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>A second numerical approximation</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Classification of differential equations</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>The Black–Scholes equation</td>
<td>74</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Explicit, implicit, and θ-methods</td>
<td>76</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Initial and boundary conditions and definition of the grid</td>
<td>76</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Implementation of the θ-method with Matlab</td>
<td>82</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Stability</td>
<td>85</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Coordinate transformation of space variables</td>
<td>88</td>
</tr>
<tr>
<td>4.4</td>
<td>American options</td>
<td>90</td>
</tr>
<tr>
<td>4.4.1</td>
<td>A note on Matlab's function spdiags</td>
<td>101</td>
</tr>
<tr>
<td>5.</td>
<td>Binomial trees</td>
<td>103</td>
</tr>
<tr>
<td>5.1</td>
<td>Motivation</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Matching moments</td>
<td>104</td>
</tr>
<tr>
<td>5.2</td>
<td>Growing the tree</td>
<td>105</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Implementing a tree</td>
<td>106</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Vectorization</td>
<td>107</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Binomial expansion</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>Early exercise</td>
<td>110</td>
</tr>
<tr>
<td>5.4</td>
<td>Dividends</td>
<td>111</td>
</tr>
<tr>
<td>5.5</td>
<td>The Greeks</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Greeks from the tree</td>
<td>113</td>
</tr>
</tbody>
</table>
Part Two  Simulation  117

6. Generating random numbers  119
  6.1 Monte Carlo methods and sampling  119
     6.1.1 How it all began  119
     6.1.2 Financial applications  120
  6.2 Uniform random number generators  121
     6.2.1 Congruential generators  121
     6.2.2 Mersenne Twister  124
  6.3 Nonuniform distributions  125
     6.3.1 The inversion method  125
     6.3.2 Acceptance–rejection method  127
  6.4 Specialized methods for selected distributions  129
     6.4.1 Normal distribution  129
     6.4.2 Higher order moments and the Cornish–Fisher expansion  132
     6.4.3 Further distributions  134
  6.5 Sampling from a discrete set  136
     6.5.1 Discrete uniform selection  136
     6.5.2 Roulette wheel selection  137
     6.5.3 Random permutations and shuffling  138
  6.6 Sampling errors—and how to reduce them  139
     6.6.1 The basic problem  139
     6.6.2 Quasi-Monte Carlo  140
     6.6.3 Stratified sampling  142
     6.6.4 Variance reduction  143
  6.7 Drawing from empirical distributions  145
     6.7.1 Data randomization  145
     6.7.2 Bootstrap  146
  6.8 Controlled experiments and experimental design  152
     6.8.1 Replicability and ceteris paribus analysis  152
     6.8.2 Available random number generators in Matlab  153
     6.8.3 Uniform random numbers from Matlab’s rand function  154
     6.8.4 Gaussian random numbers from Matlab’s randn function  155
     6.8.5 Remedies  156

7. Modeling dependencies  159
  7.1 Transformation methods  159
     7.1.1 Linear correlation  159
     7.1.2 Rank correlation  165
  7.2 Markov chains  173
     7.2.1 Concepts  173
     7.2.2 The Metropolis algorithm  175
  7.3 Copula models  178
     7.3.1 Concepts  178
     7.3.2 Simulation using copulas  181
8. A gentle introduction to financial simulation

8.1 Setting the stage

8.2 Single-period simulations
  8.2.1 Terminal asset prices
  8.2.2 1-over-N portfolios
  8.2.3 European options
  8.2.4 VaR of a covered put portfolio

8.3 Simple price processes

8.4 Processes with memory in the levels of returns
  8.4.1 Efficient versus adaptive markets
  8.4.2 Moving averages
  8.4.3 Autoregressive models
  8.4.4 Autoregressive moving average (ARMA) models
  8.4.5 Simulating ARMA models
  8.4.6 Models with long-term memory

8.5 Time-varying volatility
  8.5.1 The concepts
  8.5.2 Autocorrelated time-varying volatility
  8.5.3 Simulating GARCH processes
  8.5.4 Selected further autoregressive volatility models

8.6 Adaptive expectations and patterns in price processes
  8.6.1 Price–earnings models
  8.6.2 Models with learning

8.7 Historical simulation
  8.7.1 Backtesting
  8.7.2 Bootstrap

8.8 Agent-based models and complexity

9. Financial simulation at work: some case studies

9.1 Constant proportion portfolio insurance (CPPI)
  9.1.1 Basic concepts
  9.1.2 Bootstrap

9.2 VaR estimation with Extreme Value Theory
  9.2.1 Basic concepts
  9.2.2 Scaling the data
  9.2.3 Using Extreme Value Theory

9.3 Option pricing
  9.3.1 Modeling prices
  9.3.2 Pricing models
  9.3.3 Greeks
  9.3.4 Quasi-Monte Carlo

Part Three Optimization

10. Optimization problems in finance
  10.1 What to optimize?
10.2 Solving the model  
10.2.1 Problems  
10.2.2 Classical methods and heuristics  
10.3 Evaluating solutions  
10.4 Examples  
Portfolio optimization with alternative risk measures  
Model selection  
Robust/resistant regression  
Agent-based models  
Calibration of option-pricing models  
Calibration of yield structure models  
10.5 Summary  

11. Basic methods  
11.1 Finding the roots of \( f(x) = 0 \)  
11.1.1 A naive approach  
Graphical solution  
Random search  
11.1.2 Bracketing  
\( \tilde{1.1.8} \) Bisection  
11.1.4 Fixed point method  
Convergence  
11.1.5 Newton's method  
Comments  
11.2 Classical unconstrained optimization  
Convergence  
11.3 Unconstrained optimization in one dimension  
11.3.1 Newton's method  
11.3.2 Golden section search  
11.4 Unconstrained optimization in multiple dimensions  
11.4.1 Steepest descent method  
11.4.2 Newton's method  
11.4.3 Quasi-Newton method  
11.4.4 Direct search methods  
11.4.5 Practical issues with Matlab  
11.5 Nonlinear Least Squares  
11.5.1 Problem statement and notation  
11.5.2 Gauss–Newton method  
11.5.3 Levenberg–Marquardt method  
11.6 Solving systems of nonlinear equations \( F(x) = 0 \)  
11.6.1 General considerations  
11.6.2 Fixed point methods  
11.6.3 Newton's method  
11.6.4 Quasi-Newton methods  
11.6.5 Further approaches  
11.7 Synoptic view of solution methods
12. Heuristic methods in a nutshell 337
12.1 Heuristics 337
12.2 Trajectory methods 341
   12.2.1 Stochastic local search 341
   12.2.2 Simulated Annealing 342
   12.2.3 Threshold Accepting 344
   12.2.4 Tabu Search 344
12.3 Population-based methods 345
   12.3.1 Genetic Algorithms 345
   12.3.2 Differential Evolution 346
   12.3.3 Particle Swarm Optimization 347
   12.3.4 Ant Colony Optimization 348
12.4 Hybrids 349
12.5 Constraints 352
12.6 The stochastics of heuristic search 354
   12.6.1 Stochastic solutions and computational resources 354
   12.6.2 An illustrative experiment 356
12.7 General considerations 359
   12.7.1 What technique to choose? 359
   12.7.2 Efficient implementations 359
   12.7.3 Parameter settings 362
12.8 Summary 363
12.A Implementing heuristic methods with Matlab 364
   12.A.1 Threshold Accepting 367
   12.A.2 Genetic Algorithm 371
   12.A.3 Differential Evolution 375
   12.A.4 Particle Swarm Optimization 377

13. Portfolio optimization 381
13.1 The investment problem 381
13.2 The classical case: mean–variance optimization 383
   13.2.1 The model 383
   13.2.2 Solving the model 385
   13.2.3 Mean–variance models 386
   13.2.4 True, estimated, and realized frontiers 393
   13.2.5 Repairing matrices 396
13.3 Heuristic optimization of one-period models 403
   13.3.1 Asset selection with local search 403
   13.3.2 Scenario optimization with Threshold Accepting 409
   13.3.3 Examples 421
   13.3.4 Diagnostics 437
13.A More implementation issues in R 440
   13.A.1 Scoping rules in R and objective functions 440
   13.A.2 Vectorized objective functions 441
## 14. Econometric models 445

### 14.1 Term structure models 445

#### 14.1.1 Yield curves 445

#### 14.1.2 The Nelson–Siegel model 451

#### 14.1.3 Calibration strategies 456

#### 14.1.4 Experiments 474

### 14.2 Robust and resistant regression 480

#### 14.2.1 The regression model 484

#### 14.2.2 Estimation 486

#### 14.2.3 An example 491

#### 14.2.4 Numerical experiments 494

#### 14.2.5 Final remarks 500

### 14.A Maximizing the Sharpe ratio 502

## 15. Calibrating option pricing models 505

### 15.1 Implied volatility with Black–Scholes 506

The smile 509

### 15.2 Pricing with the characteristic function 510

#### 15.2.1 A pricing equation 510

#### 15.2.2 Numerical integration 516

### 15.3 Calibration 541

#### 15.3.1 Techniques 541

#### 15.3.2 Organizing the problem and implementation 544

#### 15.3.3 Two experiments 552

### 15.4 Final remarks 557

### 15.A Quadrature rules for infinity 558

**Bibliography** 563

**Index** 577