The Capital Asset Pricing Model in the 21st Century

Analytical, Empirical, and Behavioral Perspectives

HAIM LEVY

Hebrew University, Jerusalem
Contents

Preface xi

1 Introduction 1
 1.1. The Mean-Variance Rule and the Capital Asset Pricing Model: Overview 1
 1.2. The Intensive Use of the Mean-Variance and the Capital Asset Pricing Model among Practitioners 7
 1.3. The Role of the Mean-Variance and the Capital Asset Pricing Model in Academia 18
 1.4. Summary 21

2 Expected Utility Theory 23
 2.1. Introduction 23
 2.2. The Axioms and Expected Utility Theory 25
 a) The Axioms 25
 b) The Expected Utility Principle 28
 2.3. Is \(U(A) \) a Probability or a Utility? 30
 2.4. Various Attitudes toward Risk 31
 2.5. Preference with Risk Aversion and Risk Seeking 37
 2.6. Criticisms of the Expected Utility Theory 38
 a) Allais Paradox 39
 b) Criticism of the Commonly Employed Utility Functions 40
 c) Cumulative Prospect Theory: Experimental Findings that Contradict Expected Utility Theory 42
 d) Roy's Safety-First Rule 44
 2.7. Summary 44

3 Expected Utility and Investment Decision Rules 46
 3.1. Introduction 46
 3.2. Stochastic Dominance Rules 47
Contents

a) Expected Utility and the Cumulative Distributions 47
b) The First-Degree Stochastic Dominance Decision Rule 51
c) The Second-Degree Stochastic Dominance Decision Rule 52
d) The Prospect Stochastic Dominance Decision Rule 53
e) The Markowitz Stochastic Dominance Decision Rule 54

3.3. Graphical Illustrations of the Stochastic Dominance Criteria 54

3.4. Stochastic Dominance Rules and the Distribution’s Mean and Variance 58
 a) Mean, Variance, and Stochastic Dominance Rules 58
 b) Mean, Variance, and Risk Aversion 60

3.5. Summary 61

4 The Mean-Variance Rule (M-V Rule) 63
 4.1. Introduction 63
 4.2. The Mean-Variance Rule: Partial Ordering 65
 4.3. Expected Utility and Distribution’s Moments: The General Case 68
 4.4. The Quadratic Utility Function and the Mean-Variance Rule 72
 4.5. Quadratic Utility: Are There Sharper Rules Than the Mean-Variance Rule? 76
 Discussion 79
 4.6. Normal Distributions and the Mean-Variance Rule
 Discussion 85
 4.7. The Mean-Variance Rule as an Approximation to Expected Utility
 a) The Various Mean-Variance Quadratic Approximations 93
 b) Discussion: Mean-Variance Approximation and Mean-Variance Efficient Prospects 100
 c) A General Utility Function with No DARA Assumption 101
 d) A Risk-Averse Utility Function with DARA 105
 e) The Quality of the Approximation 108
 4.8. Summary 114

5 The Capital Asset Pricing Model 117
 5.1. Introduction 117
 5.2. The Mean-Variance Efficient Frontier 120
 a) The Mean-Variance Frontier with One Risky Asset and One Riskless Asset 120
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.</td>
<td>The Derivation of the Capital Asset Pricing Model</td>
<td>134</td>
</tr>
<tr>
<td>a)</td>
<td>Sharpe's Capital Asset Pricing Model Derivation</td>
<td>135</td>
</tr>
<tr>
<td>b)</td>
<td>Lintner's Capital Asset Pricing Model Derivation</td>
<td>139</td>
</tr>
<tr>
<td>c)</td>
<td>Discussion</td>
<td>143</td>
</tr>
<tr>
<td>5.4.</td>
<td>Equilibrium in the Stock Market</td>
<td>149</td>
</tr>
<tr>
<td>5.5.</td>
<td>Summary</td>
<td>154</td>
</tr>
<tr>
<td>6.</td>
<td>Extensions of the Capital Asset Pricing Model</td>
<td>156</td>
</tr>
<tr>
<td>6.1.</td>
<td>Introduction</td>
<td>156</td>
</tr>
<tr>
<td>6.2.</td>
<td>The Zero Beta Model</td>
<td>158</td>
</tr>
<tr>
<td>6.3.</td>
<td>The Segmented Capital Asset Pricing Model</td>
<td>164</td>
</tr>
<tr>
<td>6.4.</td>
<td>Merton's Intertemporal Capital Asset Pricing Model</td>
<td>168</td>
</tr>
<tr>
<td>6.5.</td>
<td>The Heterogeneous Beliefs Capital Asset Pricing Model</td>
<td>171</td>
</tr>
<tr>
<td>6.6.</td>
<td>The Conditional Capital Asset Pricing Model</td>
<td>175</td>
</tr>
<tr>
<td>6.7.</td>
<td>Ross's Arbitrage Pricing Theory</td>
<td>179</td>
</tr>
<tr>
<td>6.8.</td>
<td>Summary</td>
<td>184</td>
</tr>
<tr>
<td>7.</td>
<td>The Capital Asset Pricing Model Cannot Be Rejected:</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>Empirical and Experimental Evidence</td>
<td></td>
</tr>
<tr>
<td>7.1.</td>
<td>Introduction</td>
<td>186</td>
</tr>
<tr>
<td>7.2.</td>
<td>The Early Tests of the Capital Asset Pricing Model:</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Partial Support for the CAPM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(i) The First-Pass Regression (Time-Series Regression)</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>(ii) The Second-Pass Regression (Cross-Section Regression)</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>a) The Study by Lintner</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>b) The Study by Miller and Scholes</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>c) The Study by Black, Jensen, and Scholes</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>d) The Study by Fama and MacBeth</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>e) The Role of Beta and the Variance as Explanatory Variables</td>
<td>200</td>
</tr>
<tr>
<td>7.3.</td>
<td>The Second Cycle of Tests: Mainly Rejection of the CAPM</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>a) The Small Firm Effect</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>b) The Three-Factor Model of Fama and French</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>c) The Study of Gibbons, Ross, and Shanken: A Multivariate Test of Alphas</td>
<td>207</td>
</tr>
<tr>
<td>7.4.</td>
<td>Roll's Critique of the Empirical Tests</td>
<td>209</td>
</tr>
</tbody>
</table>
Contents

7.5. Short Positions Everywhere on the Frontier: Allegedly Provides Evidence against the Capital Asset Pricing Model 212

7.6. The Capital Asset Pricing Model Cannot Be Rejected on Empirical Ground After All 214
 a) Confidence Interval of the β Approach 215
 b) A Positive Portfolio Exists with Ex-Ante Means 219
 c) Reverse Engineering: The Approach of M. Levy and R. Roll 221
 d) The Small Firm Effect and the Investment Horizon 224

7.7. Experimental Studies of the Capital Asset Pricing Market 233

7.8. Summary 237

8 Theoretical and Empirical Criticism of the Mean-Variance Rule 239

8.1. Introduction 239

8.2. Distribution of Returns: Theoretical Approach 242

8.3. The Empirical Distribution of Return: The Paretian Versus the Normal Distribution 249

8.4. A Horse Race between Various Relevant Distributions: The Characteristics of the Various Distributions and the Methodology 255

8.5. Short Investment Horizon and the Logistic Distribution 261
 a) The Empirical Result for the Relatively Short Horizon 262
 b) The Horizon Effect on Various Parameters 265
 c) The Logistic Distribution: The M-V Rule Is Optimal 270

8.6. Goodness of Fit: Investment Horizon Longer Than One Year 275

8.7. Employing the Mean-Variance Rule: The Economic Loss 280

8.9. Summary 296

9 Prospect Theory and Expected Utility 299

9.1. Introduction 299

9.2. Prospect Theory and Expected Utility 303
 a) Prospect Theory and Expected Utility Maximization 304
 b) Asset Integration 308
 c) Risk Aversion 311
9.3. The Value Function 316
 a) The Shape of the Value Function 316
 b) Loss Aversion 317

9.4. The Decision Weight Function 323

9.5. The Pros and Cons of Prospect Theory Decision Weights 327
 a) Drawback: First-Degree Stochastic Dominance Violation 327
 b) Some Advantages 329

9.6. Summary 330

10 Cumulative Decision Weights: No Dominance Violation 333
 10.1. Introduction 333
 10.2. Rank-Dependent Expected Utility 336
 10.3. Cumulative Prospect Theory Decision Weights 340
 10.4. The Value and the Decision Weight Functions as Suggested by Cumulative Prospect Theory 345
 10.5. The Various Decision Weights: Formulas and Estimates 347
 a) Left Tail Irrelevance 353
 b) Cumulative Prospect Theory’s Unreasonable Decision Weights: The Equally Likely Outcome Case 354
 c) Irrelevancy of the Alternative Prospects 356
 10.6. The Suggested Prospect-Dependent Decision Weights Model 357
 10.7. First-Degree Stochastic Dominance Violations Due to Bounded Rationality 366
 10.8. Summary 370

11 The Mean-Variance Rule, the Capital Asset Pricing Model, and the Cumulative Prospect Theory: Coexistence 372
 11.1. Introduction 372
 11.2. Gains and Losses Versus Total Wealth 374
 a) The Wealth Effect on the Mean-Variance Efficient Frontier 375
 b) The Wealth Effect on the Capital Asset Pricing Model 378
 11.3. Risk Aversion Versus the S-Shape Value Function 380
 a) Diversification Is Not Allowed 380
 b) Diversification between Risky Assets Is Allowed 383
 c) Diversification Is Allowed and a Riskless Asset Exists 390
11.4. Cumulative Decision Weights, Mean-Variance, and the Capital Asset Pricing Model 392
 a) *S-Shape Preference with Objective Probabilities* 393
 b) *S-Shape Preferences with Monotonic Decision Weight Functions* 394

11.5. Capital Asset Pricing Model within Expected Utility and within Cumulative Prospect Theory 396

11.6. Summary 401

References 405

Name Index 415

Subject Index 418