MULTIPLE CRITERIA
DECISION MAKING AND
ITS APPLICATIONS
TO ECONOMIC PROBLEMS

by

ENRIQUE BALLESTERO
and
CARLOS ROMERO

Technical University of Madrid

KLUWER ACADEMIC PUBLISHERS
BOSTON / DORDRECHT / LONDON
CONTENTS

Preface

Chapter 1. Multiple Criteria Decision Making: An Introduction 1-10

1. Traditional Paradigm for Decision Making: Comments and Criticisms 1
2. An Illustrative Example 3
3. Some Basic Definitions 5
4. Two Intermediate Concepts: Pareto Optimality and Trade-Offs amongst Criteria 7
5. Multiple Criteria Decision Making: A Historical Sketch 9

Chapter 2. Multiobjective Optimisation Methods 11-30

1. Basic Aspects 11
2. Techniques for the Generation of the Efficient Set 13
3. An Illustrative Example 15
4. Compromise Programming: Methodological Aspects 19
5. The Concept of Compromise Set: Yu's Theorem 24
6. Two Economic Examples of Compromise Models 25
 6.1 Equilibrium of a Monopolist 25
 6.2 The "Leisure-Work" Dilemma 26

Appendix 29

Chapter 3. Satisficing MCDM Approaches: Goal Programming 31-49

1. Basic Aspects 31
2. Weighted Goal Programming (WGP) 33
3. Lexicographic Goal Programming (LGP) 34
4. The Sequential Method for Lexicographic Optimisation 36
5. Goal Programming Extensions 41
6. Some Critical Issues in Goal Programming 42
7. Two Economic Examples of GP Models 46
 7.1 Satisficing Monopolist Equilibrium 46
 7.2 A Satisficing Worker's Enterprise Equilibrium 48

Chapter 4. Multiattribute Utility Approaches 51-62

1. The Concept of Multiattribute Utility Function 51
2. Utility Decomposition: Preferential and Utility Independence Conditions 52
3. Determination of Multiattribute Utility Functions 55
4. A MAUT Application 56
5. A Final Reflection 61

Chapter 5. Miscellaneous Questions 63-75

1. Purpose 63
2. Some Comments on other MCDM Approaches 63
3. Links between Compromise Programming and Goal Programming 65
4. A Utility Interpretation of Compromise Programming and Goal Programming 68
5. Choosing a MCDM Technique: Some Considerations 73
Chapter 6. A First Linkage: CP and Bi-Attribute Utility 77-101
1. Introduction 77
2. Utility Meaning of the Ideal Point 78
3. Preferences and the Compromise Choice 84
4. Economic Meaning of Approximation to the Ideal 87
5. A Bounding Model for Standard Individuals: The Case of the “Average” Investor 89
6. An Example of Portfolio Selection 93
7. The Case of a Decision-Maker with Particular Preferences 97
8. Some Conclusions and Comments 100

Chapter 7. Joint Production Shadow Prices and the Three Optima Theorem 103-123
1. Introduction 103
2. Shadow Prices: A General Theorem 104
3. A Car-Truck Illustrative Example of Shadow Prices 109
4. Three Crucial Optima for an Industry 110
5. Anchor Values and Market Prices: An Introductory but Restrictive Link 111
6. A Less Restrictive Approach to the Anchor Value-Market Price Link 113
7. Industry’s Equilibrium and the Best-Compromise Solutions 114
8. The Three Optima Theorem 117
9. Extensions 121
10. Conclusions 122

1. Introduction 125
2. Notation and Definitions 126
3. A Reminder on Utility Functions with Separable Variables and their Standard Optimisation 127
4. The CP Distance Form as a Utility Function 129
5. A Case of Health Care Management 134
6. Searching for the Structure of the Utility Functions 138
7. The Structure of Uni-Dimensional Utility Functions 140
8. Main Assumption 141
9. Economic Meaning of Parameters 142
10. A More Extensive Approach to Utility and the Compromise Linkage 144
11. Specification and Optimisation 145
12. The Illustrative Work-Leisure Dilemma Again 147
13. Selecting a Car from Utility Characteristics: A Multiattribute Case 151
14. Conclusions 153

References 155-158
Index 159-160