Akwum Onwunta

Contributions to Credit Portfolio Modeling and Optimization

PETER LANG
Internationaler Verlag der Wissenschaften
Contents

Abstract vii

Acknowledgements ix

1 General introduction 1
 1.1 Introduction to credit portfolio modeling and optimization 1
 1.2 Basel II framework for credit risk 2
 1.3 Outline of the dissertation 4

2 An overview of credit portfolio models 13
 2.1 Portfolio loss distribution 14
 2.2 Mixture models 15
 2.3 Finite state and threshold models 16
 2.4 Threshold models as Bernoulli mixture models 20
 2.5 Actuarial models 20
 2.6 Concluding remarks on Part I 22

3 Credit portfolio model for validating default risk 25
 3.1 A two-state default risk model 26
 3.2 Default and asset correlations 28
 3.3 Counting defaults 30
 3.4 Factor model calibration and validation 31
 3.4.1 The calibration problem 31
 3.4.2 Calibration with equity data 33
 3.4.3 Validation with historical default information 34

4 Estimators applied to default data 35
 4.1 Homogeneous cohorts 35
 4.2 Moment estimator and its variant 36
 4.3 Maximum likelihood estimator 37
 4.4 Theoretical analysis of the estimators 39
4.4.1 Moment estimator ... 40
4.4.2 A variant of moment estimator 45
4.4.3 Maximum likelihood estimator 47

5 Model validation ... 49
5.1 Model validation based on default data 49
5.1.1 Correlations of rating cohorts 49
5.1.2 Correlations of industry cohorts 51
5.2 Validation based on rating data 54
5.2.1 Credit portfolio model for default and migration risk 54
5.2.2 Counting rating migrations 56
5.2.3 Maximum likelihood estimator for rating data 57
5.2.4 Model validation with rating data 59
5.3 Model extensions: Relaxing the normal distribution assumption 60
5.4 Modeling the credit cycle ... 61
5.5 Stability of asset correlations 63
5.5.1 Monte Carlo studies ... 65
5.5.2 PDs quantile approach ... 68
5.6 Concluding remarks on Part II 70

6 Credit risk assessment and validation: Threshold accepting approach ... 75
6.1 Regulatory issues and credit risk clustering 77
6.1.1 General framework .. 77
6.1.2 Credit risk clustering .. 78
6.2 Optimization heuristics and credit risk clustering 80
6.2.1 Threshold Accepting ... 80
6.2.2 Basel II constraints .. 81

7 Validation techniques and empirical analysis 83
7.1 Actual number of defaults validation 83
7.2 Unexpected losses validation 85
7.3 Empirical analysis ... 86
7.3.1 Data .. 86
7.3.2 Discussion of empirical results 87
7.4 Concluding remarks on Part III 89

8 Summary and outlook .. 91