Mathematical Methods and Economic Theory

Anjan Mukherji
Subrata Guha
Contents

Preface xi

SECTION I

1 Introduction 3
 1.1 The Objective 3
 1.2 The Tools for Section I 4

2 Basic Mathematical Logic 5
 2.1 Introduction 5
 2.2 Sentential Logic 7
 2.2.1 Sentences, truth values, and notations 7
 2.2.2 Truth rules and truth tables 11
 2.2.3 Tautologies, contradictions, and contingent sentences 13
 2.2.4 Logical consequence and the validity of arguments 15
 2.2.5 Logical consistency and independence 19
 2.3 Predicate Logic 20
 2.3.1 Universe of discourse, universal and existential sentences 20
 2.3.2 Individual constants, variables, quantifiers, and predicates 21
 2.3.3 Well-formed formulas, scope of a quantifier, bound and free variables 23
 2.3.4 Truth rules of predicate logic 24
 2.3.5 Using multiple quantifiers 25

3 Set Theory 31
 3.1 Operations with Sets 31
 3.2 Binary Relations 32
3.3 Even and Odd Integers 33
3.4 Real Numbers 33
3.5 Infimum and Supremum 35
3.6 Functions 35
3.7 Countable Sets 36
3.8 Open and Closed Sets 38
3.9 Compactness 41

4 Functions of a Single Variable 46
4.1 Limits 46
4.2 Continuity 47
 4.2.1 Uniform continuity 49
 4.2.2 Existence of extrema 50
4.3 Differentiability 51
 4.3.1 Approximations 53
4.4 Integration 55
 4.4.1 Introduction 56
 4.4.2 Functions of bounded variation 56
 4.4.3 Basic properties of the integral 57
 4.4.4 Integration by parts 58
 4.4.5 The Riemann-Stieltjes integral as a Riemann integral 59
 4.4.6 The Riemann-Stieltjes integral as a finite Sum 60
 4.4.7 The integral as a function 63
 4.4.8 Improper integrals 66

5 Economic Applications I: Choice, Utility, and Aggregation 69
5.1 Introduction 69
5.2 Possibility of Choosing the 'Best' 69
5.3 The Construction of a Continuous Utility Indicator Function 71
5.4 Arrow's Theorem 73
 5.4.1 Notation and definitions 74
 5.4.2 A lemma 75
 5.4.3 The theorem 75

Further Readings for Section I 76
SECTION II

6 Introduction
 6.1 The Objective of Section II 79

7 Real Linear Algebra
 7.1 Preliminaries: Vector Spaces, Sub-spaces, Linear Dependence,
 Rank of a Sub-space, Matrices 80
 7.2 Solution to Equations and Inequalities 85
 7.3 Determinants 89
 7.4 Characteristic Roots and Vectors 91
 7.5 Quadratic Forms 92
 7.6 Dominant Diagonal Matrices
 7.6.1 Non-negative square matrices 97
 7.6.2 Stable matrices 100

8 Functions of Several Variables 103
 8.1 Differentiability 103
 8.2 Some Special Functions 107
 8.3 Maps and Fixed Points 108
 8.4 Separation Theorems 109

9 Static Optimization
 9.1 Unconstrained Optimization 112
 9.2 Constrained Optimization 113
 9.3 Equality Constraints 113
 9.4 Inequality Constraints 115
 9.5 A Duality Theorem 117

10 Economic Applications II: Demand and Supply 122
 10.1 Static Optimization I 122
 10.2 The Hicks-Allen Theory 127
 10.3 Producer Behaviour
 10.3.1 Cost and profit functions 130
 10.3.2 The excess demand function 137
 10.4 Market Equilibria
 10.4.1 The existence theorem and the fixed point theorem 139
10.5 Non-competitive Market Equilibria 141
10.6 Perfect Competition 142
10.7 Monopoly and Monopsony 142
10.8 Bilateral Monopoly 142
10.9 Social Welfare Maximization 144
10.10 Efficiency and Competitive Equilibria 144

11 Decision-making under Alternative Scenarios 149
11.1 Introduction 149
11.2 Decision-making under Uncertainty 149
 11.2.1 Lotteries 149
 11.2.2 Ranking over lotteries 150
 11.2.3 The expected utility function 151
11.3 Risk Aversion 154
 11.3.1 Preliminaries 154
 11.3.2 Measures of risk aversion 154
 11.3.3 Risk aversion and choice of risky assets 155
 11.3.4 Global measures of risk aversion 160
 11.3.5 Portfolio choice with more than one risky asset 162
11.4 Interactive Decision-making 163
 11.4.1 Introduction 163
 11.4.2 Games in normal form 164
 11.4.3 Refinements of Nash equilibria 169
 11.4.4 Bayesian-Nash equilibria 173
 11.4.5 Repeated games 174

Further Readings for Section II 176

SECTION III
12 Introduction 181

13 Dynamical Systems 182
 13.1 Continuous Time Processes 182
 13.1.1 Introduction 182
 13.1.2 Solutions to some standard forms 183
 13.1.3 Definitions and propositions 187
 13.1.4 The linear case 190
13.1.5 Motion on the plane
13.1.6 Lotka-Volterra system of equations

13.2 Discrete Processes
13.2.1 Preliminary definitions

13.3 Stability of Periodic Points
13.3.1 The logistic map

14 Dynamic Optimization
14.1 Introduction to the Optimal Control Theory
14.2 A Basic Optimal Control Problem
14.3 Necessary Conditions
14.3.1 Some special assumptions
14.3.2 A maximization condition
14.3.3 A differential equation
14.3.4 The backward value function
14.4 The Maximum Principle for the Basic Problem
14.4.1 The maximum principle for problem (A)
14.5 Sufficient Conditions for an Optimal Control
14.5.1 The Mangasarian sufficiency conditions for problem (A)
14.5.2 The Arrow sufficiency conditions for problem (A)
14.6 Variants of the Basic Problem
14.6.1 Alternative conditions on the terminal state
14.6.2 Addition of a salvage value function
14.6.3 An important note
14.6.4 Variable terminal time
14.6.5 Inequality constraints with control variables
14.7 Infinite Horizon Problems
14.7.1 Definition of an optimal control
14.7.2 Necessary conditions for optimality
14.7.3 Sufficient conditions for optimality
14.8 Infinite Horizon Problem: An Alternative Approach
14.8.1 The value function and the Bellman equation
14.8.2 The existence of the value function
14.8.3 Some properties of bounded continuous functions on X
14.8.4 Restrictions on Γ and application of the Contraction Mapping Theorem
14.8.5 Differentiability of the value function and the Euler equation 256

15 Economic Applications III: Economic Dynamics 260
15.1 Introduction 260
15.2 The Stability of Competitive Equilibrium 260
 15.2.1 Gross substitutes and the weak axiom of revealed preference 263
 15.2.2 Scarf example 267
 15.2.3 Discrete price adjustment 271
 15.2.4 Bifurcation and complex dynamics in a discrete tatonnement 273
15.3 Optimal Economic Growth 277
 15.3.1 The outlines of the model 277
 15.3.2 Solution to the optimal control problem for the household 282
 15.3.3 The solution using Arrow-type sufficiency conditions 285
 15.3.4 Aggregate dynamics in the model 287
15.4 The Social Planner's Problem 292

Further Readings for Section III 295

References 297

Index 302