Assessment of the Risk of Amazon Dieback

Walter Vergara and Sebastian M. Scholz, editors
Contents

Preface ... ix
Acknowledgments ... xi
Acronyms and Abbreviations .. xiii

1. Introduction .. 1
 Objective ... 1
 Scope .. 1
 Geographical Domain .. 3
 Data Sources .. 3

2. Modeling Future Climate in the Amazon Using the Earth Simulator 7
 The Atmospheric General Circulation Model Simulated by the Earth Simulator ... 7
 Comparison of Observed and Simulated Data for Present Time over the Amazon Basin ... 8
 Projection of Future Climate over the Amazon Basin ... 9

3. Assessment of Future Rainfall over the Amazon Basin ... 16
 Method for Estimating Probability Density Functions .. 18
 General Circulation Model Simulation of Current and Future Sea Surface Temperature Indexes ... 21
 Probability Density Functions for Future Sea Surface Temperature Indexes 22

4. Analysis of Amazon Forest Response to Climate Change 25
 Introduction ... 25
 The Lund-Potsdam-Jena Managed Land Dynamic Global Vegetation and Water Balance Model ... 26
 Simulation of Vegetation State in the Amazon Basin ... 27
 Response of Biomass to Projected Changes in Rainfall in the Different Geographical Domains ... 28
 Probability Function for Amazon Forest Biomass Change 34
 Simulation of Sensitivity to CO$_2$ and Rooting Depth 40
 Changes in Transpiration .. 43
 Mechanisms of Potential Amazon Dieback ... 44
 Changes in Lightning-Caused Wildfires ... 46

5. Interplay of Climate Impacts and Deforestation in the Amazon 49
 Regional Land Use as a Driver in the Stability of the Amazon Rainforest 49
 Scenarios .. 50
 Models Used .. 50
 Simulations ... 52
 Biome Response to Different Forcings ... 53
Figure 4.9. Cumulative Distribution Functions (Upper Panel) and Probability Density Functions (Lower Panel) for Change in Vegetation Carbon in Southern Amazonia (from 1970-2000 to 2070-2100) ... 37

Figure 4.10. Cumulative Distribution Functions (Upper Panel) and Probability Density Functions (Lower Panel) for Change in Vegetation Carbon in Northeastern Brazil (from 1970-2000 to 2070-2100) ... 38

Figure 4.11. Cumulative Distribution Functions (Upper Panel) and Probability Density Functions (Lower Panel) for Change in Vegetation Carbon in Southern Brazil (from 1970-2000 to 2070-2100) ... 39

Figure 4.12. Scenario Analysis of the Influence of Deep and Shallow Roots under Climate and CO2 Effects and Climate-Only Effects ... 43

Figure 4.13. Transpiration (in mm yr⁻¹) for the Different Vegetation Types Is Dependent on Precipitation and Temperature ... 44

Figure 4.14. Vegetation Change at Local Scale in a Grid Cell in Northeastern Amazonia ... 45

Figure 4.15. Projected Climatic Fire Danger for the HadCM3 (Blue) and the MRI CGCM 2.3.2a (Red) ... 46

Figure 4.16. Simulated Climatic Fire Danger under the MRI CGCM 2.3.2a (Top) and the HadCM3 (Bottom) Climate Scenario Using the SRES A2 Emission Scenario ... 47

Figure 4.17. Annual Total Carbon Emission from Wildfires as Simulated by LPJmL-SPITFIRE for the Eastern Amazon Region (for HadCM3, MRI CGCM 2.3.2a, and SRES-A2) ... 48

Figure 5.1. Biome-Climate Equilibrium States in South America for 20% (a), 50% (b), and 100% (c) Amazon Deforestation Scenarios ... 53

Figure 5.2. Remaining Area of Potential Tropical Forest, Seasonal Tropical Forest, Savanna, Caatinga, and Semi-Desert Biomes ... 55

Figure 5.3. Grid Point for 75% Consensus on Future Condition of Tropical South American Biomes in Relation to Current Potential Vegetation ... 56

Figure 5.4. Grid Point for 75% Consensus on Projecting the Future Condition of Tropical South American Biomes in Relation to Current Potential Vegetation ... 57

Figure 5.5. Grid Point for 75% Consensus on Future Condition of Tropical South American Biomes in Relation to Current Potential Vegetation ... 58

Figure A1.1. Schematic Illustration of SRES Scenarios ... 66

Figure A1.2. Scenarios for GHG Emissions from 2000 to 2100 (in the Absence of Additional Climate Policies) and Projections of Surface Temperatures ... 68

Figure A2.1. Rainfall-Derived Model Probability Density Functions for the Eastern Amazonia Region (EA) ... 72

Figure A2.2. Rainfall-Derived Model Probability Density Functions for the Northeast Brazil Region (NEB) ... 73

Figure A2.3. Rainfall-Derived Model Probability Density Functions for the Northwest Amazonia Region (NWA) ... 74

Figure A2.4. Rainfall-Derived Model Probability Density Functions for the Southern Amazonia Region (SAz) ... 75

Figure A2.5. Rainfall-Derived Model Probability Density Functions for the Southern Brazil Region (SB) ... 76
Figure A2.6. Sea Surface Temperature (ANSG)-Derived Model Probability Density Functions

Figure A2.7. Sea Surface Temperature (PEWG)-Derived Model Probability Density Functions

Figure A2.8. Sea Surface Temperature (ANSG and PEWG)-Derived Model Probability Density Functions

Figure A2.9. Changes in Modeled Rainfall Cumulative Distribution Functions and Probability Density Functions for the Eastern Amazonia Region (EA) over the 21st Century

Figure A2.10. Changes in Modeled Rainfall Cumulative Distribution Functions and Probability Density Functions for the Northeast Brazil Region (NEB) over the 21st Century

Figure A2.11. Changes in Modeled Rainfall Cumulative Distribution Functions and Probability Density Functions for the Northwest Amazonia Region (NWA) over the 21st Century

Figure A2.12. Changes in Modeled Rainfall Cumulative Distribution Functions and Probability Density Functions for the Southern Amazonia Region (SAz) over the 21st Century

Figure A2.13. Changes in Modeled Rainfall Cumulative Distribution Functions and Probability Density Functions for the Southern Brazil Region (SB) over the 21st Century