Contents

What's New in the Ninth Edition 25
Acknowledgments 27
About the Author 29
Trademarks 31

Chapter 1 What Is Operations Research? 35
1.1 Introduction 35
1.2 Operations Research Models 35
1.3 Solving the OR Model 39
1.4 Queuing and Simulation Models 40
1.5 Art of Modeling 40
1.6 More Than Just Mathematics 41
1.7 Phases of an OR Study 43
1.8 About This Book 44
Bibliography 45

Chapter 2 Modeling with Linear Programming 47
2.1 Two-Variable LP Model 47
2.2 Graphical LP Solution 50
 2.2.1 Solution of a Maximization Model 50
 2.2.2 Solution of a Minimization Model 58
2.3 Computer Solution with Solver and AMPL 61
 2.3.1 LP Solution with Excel Solver 61
 2.3.2 LP Solution with AMPL 65
2.4 Linear Programming Applications 69
 2.4.1 Investment 69
 2.4.2 Production Planning and Inventory Control 74
 2.4.3 Manpower Planning 82
 2.4.4 Urban Development Planning 86
 2.4.5 Blending and Refining 91
 2.4.6 Additional LP Applications 97
Bibliography 102

Chapter 3 The Simplex Method and Sensitivity Analysis 103
3.1 LP Model in Equation Form 103
3.2 Transition from Graphical to Algebraic Solution 106
3.3 The Simplex Method 110
 3.3.1 Iterative Nature of the Simplex Method 111
 3.3.2 Computational details of the Simplex algorithm 113
 3.3.3 Summary of the Simplex Method 119
3.4 Artificial Starting Solution 123
 3.4.1 M-Method 123
 3.4.2 Two-Phase Method 128
3.5 Special Cases in the Simplex Method 133
 3.5.1 Degeneracy 133
 3.5.2 Alternative Optima 136
 3.5.3 Unbounded Solution 138
 3.5.4 Infeasible Solution 140
3.6 Sensitivity Analysis 142
 3.6.1 Graphical Sensitivity Analysis 142
 3.6.2 Algebraic Sensitivity Analysis—Changes in the Right-hand Side 148
 3.6.3 Algebraic Sensitivity Analysis—Objective function 157
 3.6.4 Sensitivity Analysis with Tora, Solver, and Ampl 163
3.7 Computational Issues in Linear Programming 165

Bibliography 170

Chapter 4 Duality and Post-Optimal Analysis 171
4.1 Definition of the Dual Problem 171
4.2 Primal–Dual Relationships 175
 4.2.1 Review of Simple Matrix Operations 175
 4.2.2 Simplex Tableau Layout 176
 4.2.3 Optimal Dual Solution 177
 4.2.4 Simplex Tableau Computations 184
4.3 Economic Interpretation of Duality 187
 4.3.1 Economic Interpretation of Dual Variables 188
 4.3.2 Economic Interpretation of Dual Constraints 190
4.4 Additional Simplex Algorithms 192
 4.4.1 Dual Simplex Algorithm 193
 4.4.2 Generalized Simplex Algorithm 198
4.5 Post-optimal Analysis 199
 4.5.1 Changes Affecting Feasibility 200
 4.5.2 Changes Affecting Optimality 205

Bibliography 208
Chapter 5 Transportation Model and Its Variants 209

5.1 Definition of the Transportation Model 209
5.2 Nontraditional Transportation Models 216
5.3 The Transportation Algorithm 221
 5.3.1 Determination of the Starting Solution 222
 5.3.2 Iterative Computations of the Transportation
 Algorithm 225
 5.3.3 Simplex Method Explanation of the Method of
 Multipliers 233
5.4 The Assignment Model 234
 5.4.1 The Hungarian Method 235
 5.4.2 Simplex Explanation of the Hungarian Method 240

Bibliography 242

Chapter 6 Network Models 243

6.1 Scope and Definition of Network
 Models 243
6.2 Minimal Spanning Tree Algorithm 246
6.3 Shortest-Route Problem 251
 6.3.1 Examples of the Shortest-Route Applications 251
 6.3.2 Shortest-Route Algorithms 255
 6.3.3 Linear Programming Formulation of the Shortest-Route
 Problem 264
6.4 Maximal Flow Model 268
 6.4.1 Enumeration of Cuts 269
 6.4.2 Maximal Flow Algorithm 270
 6.4.3 Linear Programming Formulation of Maximal Flow
 Mode 278
6.5 CPM and PERT 281
 6.5.1 Network Representation 281
 6.5.2 Critical Path Method (CPM) Computations 286
 6.5.3 Construction of the Time Schedule 289
 6.5.4 Linear Programming Formulation of CPM 295
 6.5.5 PERT Networks 296

Bibliography 299

Chapter 7 Advanced Linear Programming 301

7.1 Simplex Method Fundamentals 301
 7.1.1 From Extreme Points to Basic Solutions 303
 7.1.2 Generalized Simplex Tableau in Matrix Form 306
Chapter 8
Goal Programming 335
8.1 A Goal Programming Formulation 335
8.2 Goal Programming Algorithms 340
8.2.1 The Weights Method 340
8.2.2 The Preemptive Method 342
Bibliography 348

Chapter 9 Integer Linear Programming 349
9.1 Illustrative Applications 349
9.1.1 Capital Budgeting 350
9.1.2 Set-Covering Problem 354
9.1.3 Fixed-Charge Problem 359
9.1.4 Either-Or and If-Then Constraints 364
9.2 Integer Programming Algorithms 369
9.2.1 Branch-and-Bound (B&B) Algorithm 370
9.2.2 Cutting-Plane Algorithm 378
Bibliography 383

Chapter 10 Heuristic Programming 385
10.1 Introduction 385
10.2 Greedy (Local Search) Heuristics 386
10.2.1 Discrete Variable Heuristic 386
10.2.2 Continuous Variable Heuristic 388
10.3 Metaheuristic 391
10.3.1 Tabu Search Algorithm 392
10.3.2 Simulated Annealing Algorithm 399
10.3.3 Genetic Algorithm 405
10.4 Application of Metaheuristics to Integer Linear Programs 410
 10.4.1 ILP Tabu Algorithm 412
 10.4.2 ILP Simulated Annealing Algorithm 416
 10.4.3 ILP Genetic Algorithm 420

10.5 Introduction to Constraint Programming (CP) 425

Bibliography 425

Chapter 11 Traveling Salesperson Problem (TSP) 429

11.1 Example Applications of TSP 429
11.2 TSP Mathematical Model 431
11.3 Exact TSP Algorithms 441
 11.3.1 B&B Algorithm 441
 11.3.2 Cutting-Plane Algorithm 444
11.4 Local Search Heuristics 446
 11.4.1 Nearest-Neighbor Heuristic 447
 11.4.2 Reversal Heuristic 447
11.5 Metaheuristic 450
 11.5.1 TSP Tabu Algorithm 450
 11.5.2 TSP Simulated Annealing Algorithm 454
 11.5.3 TSP Genetic Algorithm 457

Bibliography 461

Chapter 12 Deterministic Dynamic Programming 463

12.1 Recursive Nature of Dynamic Programming (DP) Computations 463
12.2 Forward and Backward Recursion 467
12.3 Selected DP Applications 468
 12.3.1 Knapsack/Fly-Away Kit/Cargo-Loading Model 469
 12.3.2 Workforce Size Model 477
 12.3.3 Equipment Replacement Model 480
 12.3.4 Investment Model 483
 12.3.5 Inventory Models 487
12.4 Problem of Dimensionality 487

Bibliography 490

Chapter 13 Deterministic Inventory Models 491

13.1 General Inventory Model 491
13.2 Role of Demand in the Development of Inventory Models 492
13.3 Static Economic-Order-Quantity (EOQ) Models 494
 13.3.1 Classical EOQ Model 494
 13.3.2 EOQ with Price Breaks 499
 13.3.3 Multi-Item EOQ with Storage Limitation 503
13.4 Dynamic EOQ Models 505
 13.4.1 No-Setup EOQ Model 507
 13.4.2 Setup EOQ Model 510

Chapter 14 Review of Basic Probability 523
14.1 Laws of Probability 523
 14.1.1 Addition Law of Probability 524
 14.1.2 Conditional Law of Probability 525
14.2 Random Variables and Probability Distributions 526
14.3 Expectation of a Random Variable 529
 14.3.1 Mean and Variance (Standard Deviation) of a Random Variable 530
 14.3.2 Joint Random Variables 531
14.4 Four Common Probability Distributions 534
 14.4.1 Binomial Distribution 535
 14.4.2 Poisson Distribution 535
 14.4.3 Negative Exponential Distribution 537
 14.4.4 Normal Distribution 538
14.5 Empirical Distributions 540

Chapter 15 Decision Analysis and Games 547
15.1 Decision Making under Certainty—Analytic Hierarchy Process (AHP) 547
15.2 Decision Making under Risk 557
 15.2.1 Decision Tree-Based Expected Value Criterion 557
 15.2.2 Variants of the Expected Value Criterion 563
15.3 Decision under Uncertainty 571
15.4 Game Theory 575
 15.4.1 Optimal Solution of Two-Person Zero-Sum Games 576
 15.4.2 Solution of Mixed Strategy Games 579

Bibliography 521
Chapter 16 Probabilistic Inventory Models 587
16.1 Continuous Review Models 587
 16.1.1 "Probabilitized" EOQ Model 587
 16.1.2 Probabilistic EOQ Model 590
16.2 Single-Period Models 594
 16.2.1 No-Setup Model (Newsvendor Model) 594
 16.2.2 Setup Model (s-S Policy) 598
16.3 Multiperiod Model 601
Bibliography 603

Chapter 17 Markov Chains 605
17.1 Definition of a Markov Chain 605
17.2 Absolute and n-Step Transition Probabilities 608
17.3 Classification of the States in a Markov Chain 610
17.4 Steady-State Probabilities and Mean Return Times of Ergodic Chains 612
17.5 First Passage Time 617
17.6 Analysis of Absorbing States 621
Bibliography 626

Chapter 18 Queuing Systems 627
18.1 Why Study Queues? 627
18.2 Elements of a Queuing Model 629
18.3 Role of Exponential Distribution 630
18.4 Pure Birth and Death Models (Relationship Between the Exponential and Poisson Distributions) 634
 18.4.1 Pure Birth Model 634
 18.4.2 Pure Death Model 638
18.5 General Poisson Queuing Model 640
18.6 Specialized Poisson Queues 645
 18.6.1 Steady-State Measures of Performance 646
 18.6.2 Single-Server Models 650
 18.6.3 Multiple-Server Models 657
 18.6.4 Machine Servicing Model—(M/M/R): (GD/K/K), R < K 667
18.7 (M/G/1):(GD/∞/∞)—Pollaczek-Khintchine (P-K) Formula 670
18.8 Other Queuing Models 672
Chapter 19 Simulation Modeling 681
19.1 Monte Carlo Simulation 681
19.2 Types of Simulation 686
19.3 Elements of Discrete Event Simulation 687
 19.3.1 Generic Definition of Events 687
 19.3.2 Sampling from Probability Distributions 688
19.4 Generation of Random Numbers 695
19.5 Mechanics of Discrete Simulation 697
 19.5.1 Manual Simulation of a Single-Server Model 697
 19.5.2 Spreadsheet-Based Simulation of the Single-Server Model 703
19.6 Methods for Gathering Statistical Observations 704
 19.6.1 Subinterval Method 705
 19.6.2 Replication Method 707
19.7 Simulation Languages 708
Bibliography 710

Chapter 20 Classical Optimization Theory 711
20.1 Unconstrained Problems 711
 20.1.1 Necessary and Sufficient Conditions 712
 20.1.2 The Newton-Raphson Method 715
20.2 Constrained Problems 717
 20.2.1 Equality Constraints 717
 20.2.2 Inequality Constraints—Karush-Kuhn-Tucker (KKT) Conditions 727
Bibliography 732

Chapter 21 Nonlinear Programming Algorithms 733
21.1 Unconstrained Algorithms 733
 21.1.1 Direct Search Method 733
 21.1.2 Gradient Method 737
21.2 Constrained Algorithms 740
 21.2.1 Separable Programming 741
 21.2.2 Quadratic Programming 749
 21.2.3 Chance-Constrained Programming 754
Appendix A Statistical Tables 763

Appendix B Partial Answers to Selected Problems 767

Index 813