Ali Sunyaev

Health-Care Telematics in Germany

Design and Application of a Security Analysis Method
Contents

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xvii</td>
<td></td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xix</td>
<td></td>
</tr>
</tbody>
</table>

1 **Introduction**

1.1 Motivation .. 3

1.2 Objectives of the Thesis .. 6

1.3 Research Methodology ... 9

1.3.1 Design Science ... 10

1.3.2 Research Design .. 11

1.3.3 Design Theory ... 13

1.3.4 Theoretical Contribution and Research Outcome .. 14

1.4 Practical Implications, Users, and Beneficiaries ... 15

2 **Healthcare Telematics in Germany with Respect to Security Issues** 17

2.1 German Healthcare .. 17

2.1.1 Structure of German Healthcare ... 18

2.1.2 Characteristics of the German Healthcare Sector .. 19

2.1.2.1 Information Exchange and Distributed Information Flows in German Healthcare System .. 19

2.1.2.2 Current Problems .. 20

2.1.2.3 Specifics of the German Healthcare Domain .. 21

2.2 Information Systems in Healthcare ... 22

2.2.1 Seamless Healthcare ... 24

2.2.2 Interoperability, Standards and Standardization Approaches in Healthcare 24

2.2.2.1 Communication Standards .. 27

2.2.2.2 Documentations Standards and Standardization Approaches 31

2.2.3 Healthcare IS Architecture Types .. 33

2.2.3.1 Monolithic System ... 34

2.2.3.2 Heterogeneous System .. 35

2.2.3.3 Service-Oriented IS Architecture .. 35
4.4 Theoretical Background

4.5 Systematization of IS Security Analysis Approaches

4.5.1 Checklists

4.5.2 Assessment Approaches

4.5.2.1 Risk Assessment Approaches

4.5.2.2 Security Control Assessment Approaches

4.5.3 Risk Analysis Approaches

4.5.4 IT Security Management Approaches

4.5.4.1 The Plan-Do-Check-Act Approach of ISO 27001

4.5.4.2 Best Practice Models

4.5.5 Legislation Accommodations

4.6 Analysis of IS Security Analysis Approaches with Respect to Healthcare

4.6.1 Examination of IS Security Approaches with Respect to General IS Security Approach Characteristics

4.6.2 Examination of IS Security Approaches with Respect to General IS Security Approach Characteristics with Reference to Healthcare

4.6.3 Examination of IS Security Approaches with Respect to Healthcare Specific IS Security Approach Characteristics

4.7 Summary

5 Designing a Security Analysis Method for Healthcare Telematics in Germany

5.1 Introduction

5.2 Research Approach

5.3 Method Engineering

5.4 Description of Method Elements

5.4.1 Method Chains and Alliances

5.4.2 Method Fragments

5.4.3 Method Chunks

5.4.4 Method Components

5.4.5 Theoretical Background

5.5 Formal Description of the Concept of Method Engineering

5.6 HatSec Security Analysis Method
6.4 Analysis of a Proposed Solution for Managing Health Professional Cards in Hospitals Using a Single Sign-On Central Architecture

6.4.1 Overview

6.4.2 Induced Process Changes

6.4.2.1 General Changes

6.4.2.2 Discharge Letter Process

6.4.3 Existing Approaches for Managing Smart Cards in Hospitals

6.4.3.1 The Decentralized Approach

6.4.3.2 The VerSA Approach

6.4.3.3 Disadvantages

6.4.4 The Clinic Card Approach

6.4.4.1 Technical Architecture

6.4.4.2 Smart Card Management Unit

6.4.4.3 The Clinic Card and Card Middleware

6.4.4.4 Connector

6.4.4.5 Remote Access

6.4.4.6 Unique Characteristics of the Central Approach

6.4.4.7 Discharge Letter Process

6.4.5 Comparison of the Presented Approaches

6.4.5.1 Evaluation Framework

6.4.5.2 Hardware Requirements and Integration

6.4.5.3 Session Management

6.4.5.4 Usability

6.4.5.5 Further Value-Adding Aspects

6.4.6 Summary

6.5 Security Analysis of the German Electronic Health Card's Components on a Theoretical Level

6.5.1 Overview

6.5.2 Components and Documents Considered in this Security Analysis

6.5.2.1 Security Analysis of the Electronic Health Card's Components

6.5.2.1.1 Cross-Component Analysis

6.5.2.1.2 Key for the Combination of Medical and Administrative Data

6.5.2.1.3 Unauthorized Transfer of Medical Data

6.5.2.1.4 Missing Backup Method for Honoring Prescriptions

6.5.2.1.5 Possibility to Honor the Same Prescription Twice

6.5.2.1.6 Unassigned Assumption About the Security Implied by the Used "Zone-Concept"
6.5.2.1.7 Adjustment of Minimum Standards Happens Infrequently 204
6.5.2.1.8 Inadequate Assumption About the Security of the Systems
 Inside the Healthcare Telematics Infrastructure 205
6.5.2.1.9 Security by Obscurity ... 205
6.5.2.2 Analysis of the Connector ... 205
 6.5.2.2.1 Imprecise Specification of the Blacklist Management 205
 6.5.2.2.2 Imprecise Specification of the Trusted Viewer Interface 206
 6.5.2.2.3 Security Issues Concerning the Communication with the
 Trusted Viewer .. 206
 6.5.2.2.4 Security Issues Concerning the Communication with the
 Primary System ... 207
6.5.2.3 Analysis of the Primary System .. 208
 6.5.2.3.1 Insufficient Classification of the Processed Data 208
 6.5.2.3.2 Unassigned Assumption About the Presence of Security
 Measures Provided by Present Primary Systems 208
 6.5.2.3.3 Analysis of the Card Reader ... 209
6.5.2.4 Additional Deficiencies Found During this Security Analysis 209
 6.5.2.4.1 Missing Specification for Services to Manage eHC Data by
 the Insured ... 209
 6.5.2.4.2 Missing Backup Processes for Essential Healthcare
 Telematics Processes .. 210
 6.5.2.4.3 Possibility of Health Insurance Number Readout by
 Unauthorized Persons ... 210
 6.5.2.4.4 Logs for SMC Access on the Primary System May Not Be
 Reliable ... 210
 6.5.2.4.5 Problematic Assumptions about the Environment of the
 Medical Service Provider ... 211
 6.5.2.4.6 Insider Attacks from Medical Service Provider’s Personnel
 Not Considered in Threat Analysis ... 211
 6.5.2.4.7 Potential for an Attack on the Medical Service Provider’s
 LAN Considered As Too Low ... 211
 6.5.2.4.8 Missing Best-Practices Recommendations for Software Keys 211
 6.5.2.4.9 Missing Emergency Plans Regarding New Attacks on
 Components and Cryptographic Methods .. 212
6.5.3 Attack-Tree Analysis .. 212
6.5.4 Summary ... 212
6.6 Security Analysis of the German Electronic Health Card’s Peripheral Parts in Practice

6.6.1 Overview

6.6.2 Laboratory’s / Physician’s Practice Configuration

6.6.3 Network Traffic Analyzes and its Consequences

6.6.4 Attacking the German Electronic Health Card

6.6.4.1 Permanent-Card-Ejection

6.6.4.2 Fill or Delete Prescriptions

6.6.4.3 Block a Card’s PIN

6.6.4.4 Destroy a Card

6.6.4.5 Spy Personal Information

6.6.5 Summary

6.7 Case Studies: Lessons Learned

7 Appraisal of Results

7.1 Overview

7.2 Progress of Cognition

7.3 Design Proposals for Healthcare Telematics

Bibliography

Appendix