GARCH Models
Structure, Statistical Inference
and Financial Applications

Christian Francq
University Lille 3, Lille, France

Jean-Michel Zakoïan
CREST, Paris, and University Lille 3, France
Contents

Preface

Notation

1 Classical Time Series Models and Financial Series

1.1 Stationary Processes
1.2 ARMA and ARIMA Models
1.3 Financial Series
1.4 Random Variance Models
1.5 Bibliographical Notes
1.6 Exercises

Part I Univariate GARCH Models

2 GARCH\((p, q)\) Processes

2.1 Definitions and Representations
2.2 Stationarity Study
2.2.1 The GARCH\((1, 1)\) Case
2.2.2 The General Case
2.3 ARCH \((\infty)\) Representation*
2.3.1 Existence Conditions
2.3.2 ARCH \((\infty)\) Representation of a GARCH
2.3.3 Long-Memory ARCH
2.4 Properties of the Marginal Distribution
2.4.1 Even-Order Moments
2.4.2 Kurtosis
2.5 Autocovariances of the Squares of a GARCH
2.5.1 Positivity of the Autocovariances
2.5.2 The Autocovariances Do Not Always Decrease
2.5.3 Explicit Computation of the Autocovariances of the Squares
2.6 Theoretical Predictions
2.7 Bibliographical Notes
2.8 Exercises
CONTENTS

<table>
<thead>
<tr>
<th>3</th>
<th>Mixing*</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Markov Chains with Continuous State Space</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>Mixing Properties of GARCH Processes</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>Bibliographical Notes</td>
<td>76</td>
</tr>
<tr>
<td>3.4</td>
<td>Exercises</td>
<td>76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Temporal Aggregation and Weak GARCH Models</th>
<th>79</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Temporal Aggregation of GARCH Processes</td>
<td>79</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Nontemporal Aggregation of Strong Models</td>
<td>80</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Nonaggregation in the Class of Semi-Strong GARCH Processes</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Weak GARCH</td>
<td>82</td>
</tr>
<tr>
<td>4.3</td>
<td>Aggregation of Strong GARCH Processes in the Weak GARCH Class</td>
<td>85</td>
</tr>
<tr>
<td>4.4</td>
<td>Bibliographical Notes</td>
<td>88</td>
</tr>
<tr>
<td>4.5</td>
<td>Exercises</td>
<td>89</td>
</tr>
</tbody>
</table>

Part II Statistical Inference 91

<table>
<thead>
<tr>
<th>5</th>
<th>Identification</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Autocorrelation Check for White Noise</td>
<td>93</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Behavior of the Sample Autocorrelations of a GARCH Process</td>
<td>94</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Portmanteau Tests</td>
<td>97</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Sample Partial Autocorrelations of a GARCH</td>
<td>97</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Numerical Illustrations</td>
<td>98</td>
</tr>
<tr>
<td>5.2</td>
<td>Identifying the ARMA Orders of an ARMA-GARCH</td>
<td>100</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Sample Autocorrelations of an ARMA-GARCH</td>
<td>101</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Sample Autocorrelations of an ARMA-GARCH Process When the Noise is Not Symmetrically Distributed</td>
<td>104</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Identifying the Orders (P, Q)</td>
<td>106</td>
</tr>
<tr>
<td>5.3</td>
<td>Identifying the GARCH Orders of an ARMA-GARCH Model</td>
<td>108</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Corner Method in the GARCH Case</td>
<td>109</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Applications</td>
<td>109</td>
</tr>
<tr>
<td>5.4</td>
<td>Lagrange Multiplier Test for Conditional Homoscedasticity</td>
<td>111</td>
</tr>
<tr>
<td>5.4.1</td>
<td>General Form of the LM Test</td>
<td>111</td>
</tr>
<tr>
<td>5.4.2</td>
<td>LM Test for Conditional Homoscedasticity</td>
<td>115</td>
</tr>
<tr>
<td>5.5</td>
<td>Application to Real Series</td>
<td>117</td>
</tr>
<tr>
<td>5.6</td>
<td>Bibliographical Notes</td>
<td>120</td>
</tr>
<tr>
<td>5.7</td>
<td>Exercises</td>
<td>122</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Estimating ARCH Models by Least Squares</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Estimation of ARCH(q) models by Ordinary Least Squares</td>
<td>127</td>
</tr>
<tr>
<td>6.2</td>
<td>Estimation of ARCH(q) Models by Feasible Generalized Least Squares</td>
<td>132</td>
</tr>
<tr>
<td>6.3</td>
<td>Estimation by Constrained Ordinary Least Squares</td>
<td>135</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Properties of the Constrained OLS Estimator</td>
<td>135</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Computation of the Constrained OLS Estimator</td>
<td>137</td>
</tr>
<tr>
<td>6.4</td>
<td>Bibliographical Notes</td>
<td>138</td>
</tr>
<tr>
<td>6.5</td>
<td>Exercises</td>
<td>138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Estimating GARCH Models by Quasi-Maximum Likelihood</th>
<th>141</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Conditional Quasi-Likelihood</td>
<td>141</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Asymptotic Properties of the QMLE</td>
<td>143</td>
</tr>
<tr>
<td>7.1.2</td>
<td>The ARCH(1) Case: Numerical Evaluation of the Asymptotic Variance</td>
<td>147</td>
</tr>
</tbody>
</table>
CONTENTS

7.1.3 The Nonstationary ARCH(l) 148
7.2 Estimation of ARMA-GARCH Models by Quasi-Maximum Likelihood 150
7.3 Application to Real Data 155
7.4 Proofs of the Asymptotic Results* 156
7.5 Bibliographical Notes 180
7.6 Exercises 180

8 Tests Based on the Likelihood 185
8.1 Test of the Second-Order Stationarity Assumption 186
8.2 Asymptotic Distribution of the QML When \(\theta_0 \) is at the Boundary 187
8.2.1 Computation of the Asymptotic Distribution 191
8.3 Significance of the GARCH Coefficients 194
8.3.1 Tests and Rejection Regions 194
8.3.2 Modification of the Standard Tests 196
8.3.3 Test for the Nullity of One Coefficient 197
8.3.4 Conditional Homoscedasticity Tests with ARCH Models 199
8.3.5 Asymptotic Comparison of the Tests 201
8.4 Diagnostic Checking with Portmanteau Tests 204
8.5 Application: Is the GARCH(1,1) Model Overrepresented? 204
8.6 Proofs of the Main Results* 207
8.7 Bibliographical Notes 215
8.8 Exercises 215

9 Optimal Inference and Alternatives to the QMLE* 219
9.1 Maximum Likelihood Estimator 219
9.1.1 Asymptotic Behavior 220
9.1.2 One-Step Efficient Estimator 222
9.1.3 Semiparametric Models and Adaptive Estimators 223
9.1.4 Local Asymptotic Normality 226
9.2 Maximum Likelihood Estimator with Misspecified Density 231
9.2.1 Condition for the Convergence of \(\hat{\theta}_{n,h} \) to \(\theta_0 \) 231
9.2.2 Reparameterization Implying the Convergence of \(\hat{\theta}_{n,h} \) to \(\theta_0 \) 232
9.2.3 Choice of Instrumental Density \(h \) 233
9.2.4 Asymptotic Distribution of \(\hat{\theta}_{n,h} \) 234
9.3 Alternative Estimation Methods 236
9.3.1 Weighted LSE for the ARMA Parameters 236
9.3.2 Self-Weighted QMLE 237
9.3.3 \(L_p \) Estimators 237
9.3.4 Least Absolute Value Estimation 238
9.3.5 Whittle Estimator 238
9.4 Bibliographical Notes 239
9.5 Exercises 239

Part III Extensions and Applications 243

10 Asymmetries 245
10.1 Exponential GARCH Model 246
10.2 Threshold GARCH Model 250
10.3 Asymmetric Power GARCH Model 256
10.4 Other Asymmetric GARCH Models 258
10.5 A GARCH Model with Contemporaneous Conditional Asymmetry 259
10.6 Empirical Comparisons of Asymmetric GARCH Formulations 261
10.7 Bibliographical Notes 269
10.8 Exercises 270

11 Multivariate GARCH Processes 273
11.1 Multivariate Stationary Processes 273
11.2 Multivariate GARCH Models 275
 11.2.1 Diagonal Model 276
 11.2.2 Vector GARCH Model 277
 11.2.3 Constant Conditional Correlations Models 279
 11.2.4 Dynamic Conditional Correlations Models 281
 11.2.5 BEKK-GARCH Model 281
 11.2.6 Factor GARCH Models 284

11.3 Stationarity 286
 11.3.1 Stationarity of VEC and BEKK Models 286
 11.3.2 Stationarity of the CCC Model 289

11.4 Estimation of the CCC Model 291
 11.4.1 Identifiability Conditions 292
 11.4.2 Asymptotic Properties of the QMLE of the CCC-GARCH model 294
 11.4.3 Proof of the Consistency and the Asymptotic Normality of the QML 296

11.5 Bibliographical Notes 307
11.6 Exercises 308

12 Financial Applications 311
12.1 Relation between GARCH and Continuous-Time Models 311
 12.1.1 Some Properties of Stochastic Differential Equations 311
 12.1.2 Convergence of Markov Chains to Diffusions 313

12.2 Option Pricing 319
 12.2.1 Derivatives and Options 319
 12.2.2 The Black–Scholes Approach 319
 12.2.3 Historic Volatility and Implied Volatilities 321
 12.2.4 Option Pricing when the Underlying Process is a GARCH 321

12.3 Value at Risk and Other Risk Measures 327
 12.3.1 Value at Risk 327
 12.3.2 Other Risk Measures 331
 12.3.3 Estimation Methods 334

12.4 Bibliographical Notes 337
12.5 Exercises 338

Part IV Appendices 341

A Ergodicity, Martingales, Mixing 343
 A.1 Ergodicity 343
 A.2 Martingale Increments 344
 A.3 Mixing 347
 A.3.1 α-Mixing and β-Mixing Coefficients 348
 A.3.2 Covariance Inequality 349
 A.3.3 Central Limit Theorem 352

B Autocorrelation and Partial Autocorrelation 353
 B.1 Partial Autocorrelation 353
 B.2 Generalized Bartlett Formula for Nonlinear Processes 359
CONTENTS ix

C Solutions to the Exercises 365
D Problems 439
 References 473
 Index 487