ARCH Models for Financial Applications

Evdokia Xekalaki • Stavros Degiannakis

Department of Statistics
Athens University of Economics and Business, Greece
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Notation</td>
<td>xv</td>
</tr>
<tr>
<td>1 What is an ARCH process?</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 The autoregressive conditionally heteroscedastic process</td>
<td>8</td>
</tr>
<tr>
<td>1.3 The leverage effect</td>
<td>13</td>
</tr>
<tr>
<td>1.4 The non-trading period effect</td>
<td>15</td>
</tr>
<tr>
<td>1.5 The non-synchronous trading effect</td>
<td>15</td>
</tr>
<tr>
<td>1.6 The relationship between conditional variance and conditional mean</td>
<td>16</td>
</tr>
<tr>
<td>1.6.1 The ARCH in mean model</td>
<td>16</td>
</tr>
<tr>
<td>1.6.2 Volatility and serial correlation</td>
<td>18</td>
</tr>
<tr>
<td>2 ARCH volatility specifications</td>
<td>19</td>
</tr>
<tr>
<td>2.1 Model specifications</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Methods of estimation</td>
<td>23</td>
</tr>
<tr>
<td>2.2.1 Maximum likelihood estimation</td>
<td>23</td>
</tr>
<tr>
<td>2.2.2 Numerical estimation algorithms</td>
<td>25</td>
</tr>
<tr>
<td>2.2.3 Quasi-maximum likelihood estimation</td>
<td>28</td>
</tr>
<tr>
<td>2.2.4 Other estimation methods</td>
<td>29</td>
</tr>
<tr>
<td>2.3 Estimating the GARCH model with EViews 6: an empirical example</td>
<td>31</td>
</tr>
<tr>
<td>2.4 Asymmetric conditional volatility specifications</td>
<td>42</td>
</tr>
<tr>
<td>2.5 Simulating ARCH models using EViews</td>
<td>49</td>
</tr>
<tr>
<td>2.6 Estimating asymmetric ARCH models with G@RCH 4.2 OxMetrics: an empirical example</td>
<td>55</td>
</tr>
<tr>
<td>2.7 Misspecification tests</td>
<td>66</td>
</tr>
<tr>
<td>2.7.1 The Box–Pierce and Ljung–Box Q statistics</td>
<td>66</td>
</tr>
<tr>
<td>2.7.2 Tse’s residual based diagnostic test for conditional heteroscedasticity</td>
<td>67</td>
</tr>
<tr>
<td>2.7.3 Engle’s Lagrange multiplier test</td>
<td>67</td>
</tr>
<tr>
<td>2.7.4 Engle and Ng’s sign bias tests</td>
<td>68</td>
</tr>
<tr>
<td>2.7.5 The Breusch–Pagan, Godfrey, Glejser, Harvey and White tests</td>
<td>69</td>
</tr>
</tbody>
</table>
viii CONTENTS

2.7.6 The Wald, likelihood ratio and Lagrange multiplier tests 69
2.8 Other ARCH volatility specifications 70
 2.8.1 Regime-switching ARCH models 70
 2.8.2 Extended ARCH models 72
2.9 Other methods of volatility modelling 76
2.10 Interpretation of the ARCH process 82
Appendix 86

3 Fractionally integrated ARCH models 107
 3.1 Fractionally integrated ARCH model specifications 107
 3.2 Estimating fractionally integrated ARCH models using G@RCH 4.2 OxMetrics: an empirical example 111
 3.3 A more detailed investigation of the normality of the standardized residuals: goodness-of-fit tests 122
 3.3.1 EDF tests 123
 3.3.2 Chi-square tests 124
 3.3.3 QQ plots 125
 3.3.4 Goodness-of-fit tests using EViews and G@RCH 126
Appendix 129

4 Volatility forecasting: an empirical example using EViews 6 143
 4.1 One-step-ahead volatility forecasting 143
 4.2 Ten-step-ahead volatility forecasting 150
Appendix 154

5 Other distributional assumptions 163
 5.1 Non-normally distributed standardized innovations 163
 5.2 Estimating ARCH models with non-normally distributed standardized innovations using G@RCH 4.2 OxMetrics: an empirical example 168
 5.3 Estimating ARCH models with non-normally distributed standardized innovations using EViews 6: an empirical example 174
 5.4 Estimating ARCH models with non-normally distributed standardized innovations using EViews 6: the logl object 176
Appendix 182

6 Volatility forecasting: an empirical example using G@RCH Ox 185
Appendix 195

7 Intraday realized volatility models 217
 7.1 Realized volatility 217
 7.2 Intraday volatility models 220
 7.3 Intraday realized volatility and ARFIMAX models in G@RCH 4.2 OxMetrics: an empirical example 223
 7.3.1 Descriptive statistics 223
CONTENTS ix

7.3.2 In-sample analysis 228
7.3.3 Out-of-sample analysis 232

8 Applications in value-at-risk, expected shortfall and options pricing 239
8.1 One-day-ahead value-at-risk forecasting 239
 8.1.1 Value-at-risk 239
 8.1.2 Parametric value-at-risk modelling 240
 8.1.3 Intraday data and value-at-risk modelling 242
 8.1.4 Non-parametric and semi-parametric value-at-risk modelling 244
 8.1.5 Back-testing value-at-risk 245
 8.1.6 Value-at-risk loss functions 248
8.2 One-day-ahead expected shortfall forecasting 248
 8.2.1 Historical simulation and filtered historical simulation for expected shortfall 251
 8.2.2 Loss functions for expected shortfall 251
8.3 FTSE100 index: one-step-ahead value-at-risk and expected shortfall forecasting 252
8.4 Multi-period value-at-risk and expected shortfall forecasting 258
8.5 ARCH volatility forecasts in Black–Scholes option pricing 260
 8.5.1 Options 261
 8.5.2 Assessing the performance of volatility forecasting methods 269
 8.5.3 Black–Scholes option pricing using a set of ARCH processes 270
 8.5.4 Trading straddles based on a set of ARCH processes 271
 8.5.5 Discussion 279
8.6 ARCH option pricing formulas 281
 8.6.1 Computation of Duan's ARCH option prices: an example 286
Appendix 288

9 Implied volatility indices and ARCH models 341
9.1 Implied volatility 341
9.2 The VIX index 342
9.3 The implied volatility index as an explanatory variable 344
9.4 ARFIMAX model for implied volatility index 349
Appendix 352

10 ARCH model evaluation and selection 357
10.1 Evaluation of ARCH models 358
 10.1.1 Model evaluation viewed in terms of information criteria 359
 10.1.2 Model evaluation viewed in terms of statistical loss functions 360
 10.1.3 Consistent ranking 367
 10.1.4 Simulation, estimation and evaluation 377
 10.1.5 Point, interval and density forecasts 383
 10.1.6 Model evaluation viewed in terms of loss functions based on the use of volatility forecasts 384
10.2 Selection of ARCH models
 10.2.1 The Diebold–Mariano test 386
 10.2.2 The Harvey–Leybourne–Newbold test 389
 10.2.3 The Morgan–Granger–Newbold test 389
 10.2.4 White’s reality check for data snooping 390
 10.2.5 Hansen’s superior predictive ability test 390
 10.2.6 The standardized prediction error criterion 393
 10.2.7 Forecast encompassing tests 400
10.3 Application of loss functions as methods of model selection 401
 10.3.1 Applying the SPEC model selection method 401
 10.3.2 Applying loss functions as methods of model selection 402
 10.3.3 Median values of loss functions as methods of model selection 407
10.4 The SPA test for VaR and expected shortfall 408
 Appendix 410

11 Multivariate ARCH models 445
 11.1 Model Specifications 446
 11.1.1 Symmetric model specifications 446
 11.1.2 Asymmetric and long-memory model specifications 453
 11.2 Maximum likelihood estimation 454
 11.3 Estimating multivariate ARCH models using EViews 6 456
 11.4 Estimating multivariate ARCH models using G@RCH 5.0 465
 11.5 Evaluation of multivariate ARCH models 473
 Appendix 475

References 479

Author Index 521

Subject Index 533