ESSAYS ON ASYMMETRIC INFORMATION

A Thesis Submitted to the Faculty of the Graduate School of
the University of Minnesota
by

SHINO TAKAYAMA

In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

Professor ERZO LUTTMER
Adviser

Professor JAN WERNER
Adviser

MARCH 2006
Table of Contents

1 Introduction
 1.1 Asymmetric Information in Interest Group Politics 4
 1.2 Asymmetric Information in Financial Markets 6
 1.3 Contributions of the Dissertation 12
 1.4 Overview of the Dissertation 15

2 Analysis of Campaign Finance with Split Contribution 17
 2.1 Introduction .. 17
 2.2 The Model ... 23
 2.3 Truthful Political Equilibrium 27
 2.4 A Voting Equilibrium and Welfare Analysis 33
 2.5 Concluding Remarks .. 42
 2.6 Appendix: Proofs .. 42

3 A Dynamic Analysis of Bid-Ask Spreads with Multiple Trade Sizes 52
 3.1 Introduction .. 52
 3.2 The Model of the Sequential Trades 59
TABLE OF CONTENTS

3.3 Equilibrium Analysis 67
 3.3.1 Optimal Trading Strategies of the Informed Traders 67
 3.3.2 Existence and Uniqueness of Equilibrium 73
 3.3.3 Equilibrium Dynamics 74
 3.3.4 Bid-Ask Spreads and The Market Maker's Learning Process ... 79
 3.3.5 The Number of Trade Sizes and Its Impact on Equilibrium .. 87

3.4 The Price-Impact Function 90
3.5 Concluding Remarks 93
3.6 Appendix I: Proofs of Lemmas 96
3.7 Appendix II: Proofs of Theorems, Propositions & Corollaries 100

4 Continuous Auctions and Return Process 126
 4.1 Introduction 126
 4.2 The Description of the Back & Baruch '04 Model 128
 4.3 Numerical Simulation of the Model 132
 4.4 Concluding Remarks 135
 4.5 Appendix: Proofs 137