Real Estate Modelling and Forecasting

Chris Brooks
ICMA Centre, University of Reading

Sotiris Tsolacos
Property and Portfolio Research
Contents

List of figures...page x
List of tables..xii
List of boxes..xiv
Preface..xv
Acknowledgements.................................xix

1 Introduction...1
 1.1 Motivation for this book.........................2
 1.2 What is econometrics?............................3
 1.3 Steps in formulating an econometric model.....4
 1.4 Model building in real estate...................5
 1.5 What do we model and forecast in real estate? 6
 1.6 Model categorisation for real estate forecasting 8
 1.7 Why real estate forecasting?....................9
 1.8 Econometrics in real estate, finance and economics: similarities and differences 12
 1.9 Econometric packages for modelling real estate data 13
 1.10 Outline of the remainder of this book.........15
 Appendix: Econometric software package suppliers 20

2 Mathematical building blocks for real estate analysis 21
 2.1 Introduction......................................21
 2.2 Constructing price index numbers...............21
 2.3 Real versus nominal series and deflating nominal series 29
 2.4 Properties of logarithms and the log transform 32
 2.5 Returns..33
 2.6 Matrices...34
 2.7 The eigenvalues of a matrix....................38
Contents

3 Statistical tools for real estate analysis
- 3.1 Types of data for quantitative real estate analysis 41
- 3.2 Descriptive statistics 44
- 3.3 Probability and characteristics of probability distributions 54
- 3.4 Hypothesis testing 55
- 3.5 Pitfalls in the analysis of real estate data 65

4 An overview of regression analysis
- 4.1 Chapter objectives 72
- 4.2 What is a regression model? 73
- 4.3 Regression versus correlation 74
- 4.4 Simple regression 74
- 4.5 Some further terminology 79
- 4.6 Linearity and possible forms for the regression function 85
- 4.7 The assumptions underlying the classical linear regression model 86
- 4.8 Properties of the OLS estimator 87
- 4.9 Precision and standard errors 88
- 4.10 Statistical inference and the classical linear regression model 93

Appendix: Mathematical derivations of CLRM results for the bivariate case 104

4A.1 Derivation of the OLS coefficient estimator 104

4A.2 Derivation of the OLS standard error estimators for the intercept and slope 105

5 Further issues in regression analysis
- 5.1 Generalising the simple model to multiple linear regression 108
- 5.2 The constant term 109
- 5.3 How are the parameters (the elements of the \(\beta \) vector) calculated in the generalised case? 111
- 5.4 A special type of hypothesis test: the \(t \)-ratio 113
- 5.5 Goodness of fit statistics 115
- 5.6 Tests of non-nested hypotheses 119
- 5.7 Data mining and the true size of the test 123
- 5.8 Testing multiple hypotheses: the \(F \)-test 124
- 5.9 Omission of an important variable 129
- 5.10 Inclusion of an irrelevant variable 130

Appendix: Mathematical derivations of CLRM results for the multiple regression case 133

5A.1 Derivation of the OLS coefficient estimator 133

5A.2 Derivation of the OLS standard error estimator 134
6 Diagnostic testing
6.1 Introduction
6.2 Violations of the assumptions of the classical linear regression model
6.3 Statistical distributions for diagnostic tests
6.4 Assumption 1: $E(u_t) = 0$
6.5 Assumption 2: $\text{var}(u_t) = \sigma^2 < \infty$
6.6 Assumption 3: $\text{cov}(u_t, u_j) = 0$ for $i \neq j$
6.7 Causes of residual autocorrelation
6.8 Assumption 4: the x_t are non-stochastic ($\text{cov}(u_t, x_t) = 0$)
6.9 Assumption 5: the disturbances are normally distributed
6.10 Multicollinearity
6.11 Adopting the wrong functional form
6.12 Parameter stability tests
6.13 A strategy for constructing econometric models
Appendix: Iterative procedures for dealing with autocorrelation

7 Applications of regression analysis
7.1 Frankfurt office rents: constructing a multiple regression model
7.2 Time series regression models from the literature
7.3 International office yields: a cross-sectional analysis
7.4 A cross-sectional regression model from the literature

8 Time series models
8.1 Introduction
8.2 Some notation and concepts
8.3 Moving average processes
8.4 Autoregressive processes
8.5 The partial autocorrelation function
8.6 ARMA processes
8.7 Building ARMA models: the Box-Jenkins approach
8.8 Exponential smoothing
8.9 An ARMA model for cap rates
8.10 Seasonality in real estate data
8.11 Studies using ARMA models in real estate
Appendix: Some derivations of properties of ARMA models
8A.1 Deriving the autocorrelation function for an MA process
8A.2 Deriving the properties of AR models

9 Forecast evaluation
9.1 Forecast tests
9.2 Application of forecast evaluation criteria to a simple regression model 274
9.3 Forecast accuracy studies in real estate 290

10 Multi-equation structural models 303
10.1 Simultaneous-equation models 304
10.2 Simultaneous equations bias 306
10.3 How can simultaneous-equation models be estimated? 307
10.4 Can the original coefficients be retrieved from the πs? 308
10.5 A definition of exogeneity 310
10.6 Estimation procedures for simultaneous equations systems 313
10.7 Case study: projections in the industrial property market using a simultaneous equations system 316
10.8 A special case: recursive models 322
10.9 Case study: an application of a recursive model to the City of London office market 322
10.10 Example: a recursive system for the Tokyo office market 325

11 Vector autoregressive models 337
11.1 Introduction 337
11.2 Advantages of VAR modelling 339
11.3 Problems with VARs 340
11.4 Choosing the optimal lag length for a VAR 340
11.5 Does the VAR include contemporaneous terms? 342
11.6 A VAR model for real estate investment trusts 344
11.7 Block significance and causality tests 347
11.8 VARs with exogenous variables 352
11.9 Impulse responses and variance decompositions 352
11.10 A VAR for the interaction between real estate returns and the macroeconomy 357
11.11 Using VARs for forecasting 362

12 Cointegration in real estate markets 369
12.1 Stationarity and unit root testing 369
12.2 Cointegration 382
12.3 Equilibrium correction or error correction models 385
12.4 Testing for cointegration in regression: a residuals-based approach 387
12.5 Methods of parameter estimation in cointegrated systems 388
12.6 Applying the Engle–Granger procedure: the Sydney office market 390
12.7 The Engle and Yoo three-step method
12.8 Testing for and estimating cointegrating systems using the
 Johansen technique
12.9 An application of the Johansen technique to securitised
 real estate
12.10 The Johansen approach: a case study

13 Real estate forecasting in practice
13.1 Reasons to intervene in forecasting and to use judgement
13.2 How do we intervene in and adjust model-based forecasts?
13.3 Issues with judgemental forecasting
13.4 Case study: forecasting in practice in the United Kingdom
13.5 Increasing the acceptability of intervention
13.6 Integration of econometric and judgemental forecasts
13.7 How can we conduct scenario analysis when judgement is applied?
13.8 Making the forecast process effective

14 The way forward for real estate modelling and forecasting

References
Index