Optimizing Optimization
The Next Generation of Optimization Applications and Theory

Stephen Satchell
Contents

List of Contributors xi

Section One Practitioners and Products 1

1 Robust portfolio optimization using second-order cone programming
Fiona Kolbert and Laurence Wormald
Executive Summary 3
1.1 Introduction 3
1.2 Alpha uncertainty 4
1.3 Constraints on systematic and specific risk 6
1.4 Constraints on risk using more than one model 12
1.5 Combining different risk measures 16
1.6 Fund of funds 18
1.7 Conclusion 22
References 22

2 Novel approaches to portfolio construction: multiple risk models and multisolution generation
Sebastian Ceria, Francois Margot, Anthony Renshaw and Anureet Saxena
Executive Summary 23
2.1 Introduction 23
2.2 Portfolio construction using multiple risk models 25
2.2.1 Out-of-sample results 33
2.2.2 Discussion and conclusions 34
2.3 Multisolution generation 35
2.3.1 Constraint elasticity 39
2.3.2 Intractable metrics 41
2.4 Conclusions 51
References 52

3 Optimal solutions for optimization in practice
Daryl Roxburgh, Katja Scherer and Tim Matthews
Executive Summary 53
3.1 Introduction 53
3.1.1 BITA Star(TM) 54
3.1.2 BITA Monitor(TM) 54
3.1.3 BITA Curve™

3.1.4 BITA Optimizer™

3.2 Portfolio optimization

3.2.1 The need for optimization

3.2.2 Applications of portfolio optimization

3.2.3 Program trading

3.2.4 Long–short portfolio construction

3.2.5 Active quant management

3.2.6 Asset allocation

3.2.7 Index tracking

3.3 Mean–variance optimization

3.3.1 A technical overview

3.3.2 The BITA optimizer—functional summary

3.4 Robust optimization

3.4.1 Background

3.4.2 Introduction

3.4.3 Reformulation of mean–variance optimization

3.4.4 BITA Robust applications to controlling FE

3.4.5 FE constraints

3.4.6 Preliminary results

3.4.7 Mean forecast intervals

3.4.8 Explicit risk budgeting

3.5 BITA GLO™ Gain/loss optimization

3.5.1 Introduction

3.5.2 Omega and GLO

3.5.3 Choice of inputs

3.5.4 Analysis and comparison

3.5.5 Maximum holding = 100%

3.5.6 Adding 25% investment constraint

3.5.7 Down-trimming of emerging market returns

3.5.8 Squared losses

3.5.9 Conclusions

3.6 Combined optimizations

3.6.1 Introduction

3.6.2 Discussion

3.6.3 The model

3.6.4 Incorporation of alpha and risk model information

3.7 Practical applications: charities and endowments

3.7.1 Introduction

3.7.2 Why endowments matter

3.7.3 Managing endowments

3.7.4 The specification

3.7.5 Trustees' attitude to risk

3.7.6 Decision making under uncertainty

3.7.7 Practical implications of risk aversion
3.8 Bespoke optimization—putting theory into practice
 3.8.1 Request: produce optimal portfolio with exactly 50 long and 50 short holdings
 3.8.2 Request: how to optimize in the absence of forecast returns
3.9 Conclusions
Appendix A: BITA Robust optimization
Appendix B: BITA GLO
References

4 The Windham Portfolio Advisor
Mark Kritzman
Executive Summary
4.1 Introduction
4.2 Multigoal optimization
 4.2.1 The problem
 4.2.2 The WPA solution
 4.2.3 Summary
4.3 Within-horizon risk measurement
 4.3.1 The problem
 4.3.2 The WPA solution
4.4 Risk regimes
 4.4.1 The problem
 4.4.2 The WPA solution
 4.4.3 Summary
4.5 Full-scale optimization
 4.5.1 The problem
 4.5.2 The WPA solution
 4.5.3 Summary
Appendix—WPA features
References

Section Two Theory

5 Modeling, estimation, and optimization of equity portfolios with heavy-tailed distributions
Almira Biglova, Sergio Ortobelli, Svetlozar Rachev and Frank J. Fabozzi
Executive Summary
5.1 Introduction
5.2 Empirical evidence from the Dow Jones Industrial Average components
5.3 Generation of scenarios consistent with empirical evidence
 5.3.1 The portfolio dimensionality problem
 5.3.2 Generation of return scenarios
11.3.3 Simulating Johnson random variates 256
11.4 The portfolio optimization algorithm 257
 11.4.1 The maximization problem 257
 11.4.2 The threshold acceptance algorithm 260
11.5 Data reweighting 261
11.6 Alpha information 262
11.7 Empirical application 265
 11.7.1 The decay factor, ρ 266
 11.7.2 The coefficient of disappointment aversion, A 268
 11.7.3 The importance of non-Gaussianity 268
11.8 Conclusion 271
11.9 Appendix 272
References 278

12 More than you ever wanted to know about conditional value at risk optimization 283
Bernd Scherer
Executive Summary 283
12.1 Introduction: Risk measures and their axiomatic foundations 283
12.2 A simple algorithm for CVaR optimization 285
12.3 Downside risk measures 288
 12.3.1 Do we need downside risk measures? 288
 12.3.2 How much momentum investing is in a downside risk measure? 288
 12.3.3 Will downside risk measures lead to "under-diversification"? 290
12.4 Scenario generation I: The impact of estimation and approximation error 292
 12.4.1 Estimation error 292
 12.4.2 Approximation error 293
12.5 Scenario generation II: Conditional versus unconditional risk measures 295
12.6 Axiomatic difficulties: Who has CVaR preferences anyway? 296
12.7 Conclusion 298
Acknowledgment 298
References 298

Index 301