Volume 2: Applications

13 MCMC Methods for Continuous-Time Financial Econometrics 1

Michael Johannes and Nicholas Polson

1. Introduction 2
2. Overview of Bayesian Inference and MCMC 5
 2.1. MCMC Simulation and Estimation 5
 2.2. Bayesian Inference 6
 2.2.1. The Posterior Distribution 7
 2.2.2. The Likelihood 7
 2.2.3. The Prior Distribution 7
 2.2.4. Marginal Parameter Posterior 8
 2.2.5. State Estimation 8
 2.2.6. Model Specification 8
3. MCMC: Methods and Theory 9
 3.1. Clifford–Hammersley Theorem 9
 3.2. Gibbs Sampling 10
 3.2.1. The Griddy Gibbs Sampler 11
 3.3. Metropolis–Hastings 12
 3.3.1. Independence Metropolis–Hastings 13
 3.3.2. Random-Walk Metropolis 14
 3.4. Convergence Theory 14
 3.4.1. Convergence of Markov Chains 15
 3.4.2. Convergence of MCMC Algorithms 15
3.5. MCMC Algorithms: Issues and Practical Recommendations 20
 3.5.1. Building MCMC Algorithms 20
 3.5.2. Blocking 20
 3.5.3. Simulation Studies 20
 3.5.4. Provable Convergence 21
 3.5.5. Choosing Proposal Densities and Tuning Metropolis Algorithms 21
 3.5.6. Noninformative Priors 23
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.7.</td>
<td>Convergence Diagnostics and Starting Values</td>
<td>23</td>
</tr>
<tr>
<td>3.5.8.</td>
<td>Rao-Blackwellization</td>
<td>23</td>
</tr>
<tr>
<td>4.</td>
<td>Bayesian Inference and Asset Pricing Models</td>
<td>24</td>
</tr>
<tr>
<td>4.1.</td>
<td>States Variables and Prices</td>
<td>24</td>
</tr>
<tr>
<td>4.2.</td>
<td>Time-Discretization: Computing (p(Y</td>
<td>X, \Theta)) and (p(X</td>
</tr>
<tr>
<td>4.3.</td>
<td>Parameter Distribution</td>
<td>30</td>
</tr>
<tr>
<td>5.</td>
<td>Asset Pricing Applications</td>
<td>31</td>
</tr>
<tr>
<td>5.1.</td>
<td>Equity Asset Pricing Models</td>
<td>32</td>
</tr>
<tr>
<td>5.1.1.</td>
<td>Geometric Brownian Motion</td>
<td>32</td>
</tr>
<tr>
<td>5.1.2.</td>
<td>Black–Scholes</td>
<td>33</td>
</tr>
<tr>
<td>5.1.3.</td>
<td>A Multivariate Version of Merton’s Model</td>
<td>36</td>
</tr>
<tr>
<td>5.1.4.</td>
<td>Time-Varying Equity Premium</td>
<td>40</td>
</tr>
<tr>
<td>5.1.5.</td>
<td>Log-Stochastic Volatility Models</td>
<td>45</td>
</tr>
<tr>
<td>5.1.6.</td>
<td>Alternative Stochastic Volatility Models</td>
<td>50</td>
</tr>
<tr>
<td>5.2.</td>
<td>Term Structure Models</td>
<td>54</td>
</tr>
<tr>
<td>5.2.1.</td>
<td>Vasicek’s Model</td>
<td>54</td>
</tr>
<tr>
<td>5.2.2.</td>
<td>Vasicek with Jumps</td>
<td>57</td>
</tr>
<tr>
<td>5.2.3.</td>
<td>The CIR Model</td>
<td>61</td>
</tr>
<tr>
<td>5.3.</td>
<td>Regime Switching Models</td>
<td>63</td>
</tr>
<tr>
<td>6.</td>
<td>Conclusions and Future Directions</td>
<td>65</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>66</td>
</tr>
</tbody>
</table>

14 The Analysis of the Cross-Section of Security Returns

Ravi Jagannathan, Georgios Skoulakis, and Zhenyu Wang

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>74</td>
</tr>
<tr>
<td>2.</td>
<td>Linear Beta Pricing Models, Factors, and Characteristics</td>
<td>77</td>
</tr>
<tr>
<td>2.1.</td>
<td>Linear Beta Pricing Models</td>
<td>77</td>
</tr>
<tr>
<td>2.2.</td>
<td>Factor Selection</td>
<td>78</td>
</tr>
<tr>
<td>3.</td>
<td>Cross-Sectional Regression Methods</td>
<td>80</td>
</tr>
<tr>
<td>3.1.</td>
<td>Description of the CSR Method</td>
<td>80</td>
</tr>
<tr>
<td>3.2.</td>
<td>Consistency and Asymptotic Normality of the CSR Estimator</td>
<td>83</td>
</tr>
<tr>
<td>3.3.</td>
<td>Fama–MacBeth Variance Estimator</td>
<td>85</td>
</tr>
<tr>
<td>3.4.</td>
<td>Conditionally Homoskedastic Residuals Given the Factors</td>
<td>87</td>
</tr>
<tr>
<td>3.5.</td>
<td>Using Security Characteristics to Test Factor Pricing Models</td>
<td>90</td>
</tr>
<tr>
<td>3.5.1.</td>
<td>Consistency and Asymptotic Normality of the CSR Estimator</td>
<td>92</td>
</tr>
<tr>
<td>3.5.2.</td>
<td>Misspecification Bias and Protection Against Spurious Factors</td>
<td>93</td>
</tr>
<tr>
<td>3.6.</td>
<td>Time-Varying Security Characteristics</td>
<td>94</td>
</tr>
<tr>
<td>3.6.1.</td>
<td>No Pricing Restrictions Imposed on Traded Factors</td>
<td>94</td>
</tr>
<tr>
<td>3.6.2.</td>
<td>Traded Factors with Imposed Pricing Restrictions</td>
<td>97</td>
</tr>
<tr>
<td>3.6.3.</td>
<td>Using Time-Average Characteristics to Avoid the Bias</td>
<td>99</td>
</tr>
<tr>
<td>3.7.</td>
<td>(N)-Consistency of the CSR Estimator</td>
<td>101</td>
</tr>
</tbody>
</table>
15 Option Pricing Bounds and Statistical Uncertainty: Using Econometrics to Find an Exit Strategy in Derivatives Trading

Per A. Mykland

1. Introduction
 1.1. Pricing Bounds, Trading Strategies, and Exit Strategies
 1.2. Related Problems and Related Literature

2. Options Hedging from Prediction Sets: Basic Description
 2.1. Setup and Super-Self-Financing Strategies
 2.2. The Bounds and \(A \) and \(B \)
 2.3. The Practical Role of Prediction Set Trading: Reserves and Exit Strategies

3. Options Hedging from Prediction Sets: The Original Cases
 3.1. Pointwise Bounds
 3.2. Integral Bounds
 3.3. Comparison of Approaches
 3.4. Trading with Integral Bounds and the Estimation of Consumed Volatility
 3.5. An Implementation with Data

4. Properties of Trading Strategies
 4.1. Super-Self-Financing and Supermartingale
 4.2. Defining Self-Financing Strategies
 4.3. Proofs for Section 4.1
 4.3.1. Proof of Theorem 1
 4.3.2. Proof of Corollary 1
 4.3.3. Proof of Proposition 1

5. Prediction Sets: General Theory
 5.1. The Prediction Set Theorem
 5.2. Prediction Sets: A Problem of Definition
 5.3. Prediction Regions from Historical Data: A Decoupled Procedure
5. Discrete Observations with Decreasing Stepsize 216
 5.1. Observations on a Fixed Interval 216
 5.2. Observations on an Increasing Interval 219
6. Discrete Observations with Constant Stepsize 223
 6.1. Approximating the Likelihood 224
 6.2. Contrast Functions and Estimating Functions 225
7. Observations with Errors 228
 7.1. Additive Errors 228
 7.1.1. Neglecting the Errors 229
 7.1.2. Taking Care of the Errors 230
 7.2. Round-Off Errors 233
 7.2.1. Neglecting the Errors 233
 7.2.2. Taking Care of the Errors 234
8. Concluding Remarks 236
References 237

17 Stock Market Trading Volume 241
Andrew W. Lo and Jiang Wang
1. Introduction 242
2. Measuring Trading Activity 244
 2.1. Notation 245
 2.2. Motivation 246
 2.3. Defining Individual and Portfolio Turnover 248
 2.4. Time Aggregation 250
 2.5. The Data 250
3. Time-Series Properties 251
 3.1. Seasonalities 255
 3.2. Secular Trends and Detrending 258
4. Cross-Sectional Properties 267
 4.1. Specification of Cross-Sectional Regressions 272
 4.2. Summary Statistics for Regressors 275
 4.3. Regression Results 280
5. Volume Implications of Portfolio Theory 284
 5.1. Two-Fund Separation 286
 5.2. (K + 1)-Fund Separation 288
 5.3. Empirical Tests of (K + 1)-Fund Separation 290
6. Volume Implications of Intertemporal Asset Pricing Models 294
 6.1. An ICAPM 295
 6.1.1. The Economy 295
 6.1.2. Equilibrium 296
 6.2. The Behavior of Returns and Volume 298
 6.2.1. The Cross-Section of Volume 299
6.2.2. Time-Series Implications for the Hedging Portfolio 300
6.2.3. Cross-Sectional Implications for the Hedging Portfolio 300
6.3. Empirical Construction of the Hedging Portfolio 302
6.4. The Forecast Power of the Hedging Portfolio 313
 6.4.1. Hedging-Portfolio Returns 313
 6.4.2. Optimal Forecasting Portfolios 314
 6.4.3. Hedging-Portfolio Return as a Predictor of Market Returns 317
6.5. The Hedging-Portfolio Return as a Risk Factor 320
6.6. Updated Empirical Results 327
7. Conclusion 335
Acknowledgments 337
References 337
Index 343