Handbook of FINANCIAL ECONOMETRICS Tools and Techniques

VOLUME 1

Edited by

YACINE AÏT-SAHALIA
Bendheim Center for Finance
Princeton University
Princeton, NJ

LARS PETER HANSEN
Department of Economics
The University of Chicago
Chicago, IL
1 Operator Methods for Continuous-Time Markov Processes
Yacine Aït-Sahalia, Lars Peter Hansen, and José A. Scheinkman

1. Introduction 2
2. Alternative Ways to Model a Continuous-Time Markov Process 3
 2.1. Transition Functions 3
 2.2. Semigroup of Conditional Expectations 4
 2.3. Infinitesimal Generators 5
 2.4. Quadratic Forms 7
 2.5. Stochastic Differential Equations 8
 2.6. Extensions 8
 2.6.1. Time Deformation 8
 2.6.2. Semigroup Pricing 10
3. Parametrizations of the Stationary Distribution: Calibrating the Long Run 11
 3.1. Wong's Polynomial Models 12
 3.2. Stationary Distributions 14
 3.3. Fitting the Stationary Distribution 15
 3.4. Nonparametric Methods for Inferring Drift or Diffusion Coefficients 18
4. Transition Dynamics and Spectral Decomposition 20
 4.1. Quadratic Forms and Implied Generators 21
 4.1.1. Implied Generator 21
 4.1.2. Symmetrization 23
 4.2. Principal Components 24
 4.2.1. Existence 25
 4.2.2. Spectral Decomposition 27
 4.2.3. Dependence 28
 4.3. Applications 30
 4.3.1. Zipf's Law 30
 4.3.2. Stationarity and Volatility 30
 4.3.3. Approximating Variance Processes 32
 4.3.4. Imitating Long Memory Processes 33
5. Hermite and Related Expansions of a Transition Density 36
 5.1. Exponential Expansion 36
 5.2. Hermite Expansion of the Transition Function 37
 5.2.1. Change of Variable and Rescaling 38
 5.2.2. Coefficients of the Expansion 39
 5.3. Local Expansions of the Log-Transition Function 40
 5.3.1. Expansion in Δ 41
 5.3.2. Leading Term 42
 5.3.3. Next Two Terms 43
 5.3.4. Remaining Terms 44
 5.3.5. Expansions in Powers of $x - x_0$ 44
6. Observable Implications and Tests 45
 6.1. Local Characterization 45
 6.2. Total Positivity and Testing for Jumps 47
 6.3. Principal Component Approach 48
 6.4. Testing the Specification of Transitions 49
 6.5. Testing Markovianity 52
 6.6. Testing Symmetry 53
 6.7. Random Time Changes 54
7. The Properties of Parameter Estimators 55
 7.1. Maximum Likelihood Estimation 55
 7.2. Estimating the Diffusion Coefficient in the Presence of Jumps 57
 7.3. Maximum Likelihood Estimation with Random Sampling Times 58
8. Conclusions 61
Acknowledgments 62
References 62

2 Parametric and Nonparametric Volatility Measurement 67
Torben G. Andersen, Tim Bollerslev, and Francis X. Diebold

1. Introduction 68
2. Volatility Definitions 69
 2.1. Continuous-Time No-Arbitrage Price Processes 69
 2.2. Notional, Expected, and Instantaneous Volatility 74
 2.3. Volatility Modeling and Measurement 82
3. Parametric Methods 84
 3.1. Continuous-Time Models 85
 3.1.1. Continuous Sample Path Diffusions 85
 3.1.2. Jump Diffusions and Lévy-Driven Processes 90
 3.2. Discrete-Time Models 92
 3.2.1. ARCH Models 96
 3.2.2. Stochastic Volatility Models 99
4. Nonparametric Methods
 4.1. ARCH Filters and Smoothers
 4.2. Realized Volatility
5. Directions for Future Research
Acknowledgments
References

3 Nonstationary Continuous-Time Processes
Federico M. Bandi and Peter C. B. Phillips

1. Introduction
2. Intuition and Conditions
3. Scalar Diffusion Processes
 3.1. Generalized Density Estimation for SDPs
 3.2. NW Kernel Estimation of the Infinitesimal Moments of an SDP
 3.2.1. The Choice of Bandwidth
 3.3. Extensions in Kernel Estimation for SDPs
 3.3.1. Double-Smoothing
 3.3.2. Local Linear and Polynomial Estimation
 3.3.3. Finite Sample Refinements
 3.4. Using Nonparametric Information to Estimate and Test Parametric Models for SDPs
 3.5. Time-Inhomogeneous SDPs
 3.6. An Empirical Application: Stochastic Volatility
4. Scalar Jump-Diffusion Processes
 4.1. Generalized Density Estimation for SJDPs
 4.2. NW Kernel Estimation of the Infinitesimal Moments of an SJDP
 4.3. An Empirical Application: Stochastic Volatility
5. Multivariate Diffusion Processes
 5.1. Generalized Density Estimation for MDPs
 5.2. NW Kernel Estimation of the Infinitesimal Moments of an MDP
6. Concluding Remarks
Acknowledgments
References

4 Estimating Functions for Discretely Sampled Diffusion-Type Models
Bo Martin Bibby, Martin Jacobsen, and Michael Sørensen

1. Introduction
2. Estimating Functions
 2.1. Martingale Estimating Functions
3. Estimating Functions for Diffusion-Type Processes
 3.1. Limit Results for Diffusion Processes
 3.2. Maximum Likelihood Estimation
5 Portfolio Choice Problems

Michael W. Brandt

1. Introduction 270
2. Theoretical Problem 271
 2.1. Markowitz Paradigm 271
 2.2. Intertemporal Expected Utility Maximization 274
 2.2.1. Discrete Time Formulation 274
 2.2.2. Continuous-Time Formulation 280
 2.3. When is it Optimal to Invest Myopically? 284
 2.3.1. Constant Investment Opportunities 284
 2.3.2. Stochastic but Unhedgable Investment Opportunities 285
 2.3.3. Logarithmic Utility 285
 2.4. Modeling Issues and Extensions 285
 2.4.1. Preferences 285
 2.4.2. Intermediate Consumption 287
 2.4.3. Complete Markets 288
 2.4.4. Infinite or Random Horizon 289
 2.4.5. Frictions and Background Risks 290
3. Traditional Econometric Approaches 291
 3.1. Plug-In Estimation 291
 3.1.1. Theory 291
 3.1.2. Finite Sample Properties 297
 3.2. Decision Theory 307
 3.2.1. Parameter Uncertainty 308
 3.2.2. Incorporating Economic Views and Models 313
 3.2.3. Model Uncertainty 319
4. Alternative Econometric Approach 321
 4.1. Parametric Portfolio Weights 322
 4.1.1. Conditional Portfolio Choice by Augmenting the Asset Space 322
 4.1.2. Large-Scale Portfolio Choice with Parametric Weights 325
 4.1.3. Nonparametric Portfolio Weights 327
Acknowledgments 329
References 330

6 Heterogeneity and Portfolio Choice: Theory and Evidence 337
Stephanie Curcuru, John Heaton, Deborah Lucas, and Damien Moore

1. Introduction 338
2. Summary Statistics on Stock Market Participation and Portfolio Choice 340
3. Theories of Portfolio Choice 350
 3.1. Basic Analytic Framework 350
 3.2. Time Variation in Returns 351
 3.3. Uninsurable Background Risk 352
 3.4. Trading Frictions 354
 3.5. Life-Cycle Effects 356
 3.6. Nonparticipation 356
 3.7. Generalized Preferences 357
4. Quantitative Analyses 358
 4.1. The Consumption of Stockholders and Nonstockholders 359
 4.2. Calibrated Models with Background Risk 360
 4.2.1. Labor Income 360
 4.2.2. Business Income 361
 4.2.3. Housing 362
 4.3. Restricted Pension Investments 363
 4.4. Explaining Nonparticipation 364
 4.5. Exploiting the Covariance of Background and Market Risks 364
5. Empirical Evidence and Issues 365
 5.1. An Illustrative Example 365
 5.2. Aggregate Income Statistics 367
 5.3. Evidence on Background Risk 368
 5.3.1. Labor Income 368
 5.3.2. Business Ownership 369
 5.3.3. Employer Stock 369
 5.3.4. Pension Investments 372
 5.3.5. Housing 373
6. Conclusions 374
Acknowledgments 376
References 376
7 Analysis of High-Frequency Data
Jeffrey R. Russell and Robert F. Engle

1. Introduction 384
 1.1. Data Characteristics 384
 1.1.1. Irregular Temporal Spacing 384
 1.1.2. Discreteness 385
 1.1.3. Diurnal Patterns 386
 1.1.4. Temporal Dependence 387
 1.2. Types of Economic Data 390
 1.3. Economic Questions 392

2. Econometric Framework 394
 2.1. Examples of Point Processes 397
 2.1.1. The ACD Model 398
 2.1.2. Thinning Point Processes 405
 2.2. Modeling in Tick Time - the Marks 406
 2.2.1. VAR Models for Prices and Trades in Tick Time 407
 2.2.2. Volatility Models in Tick Time 410
 2.3. Models for Discrete Prices 412
 2.4. Calendar Time Conversion 417
 2.4.1. Bivariate Relationships 419

3. Conclusion 421

Appendix A: EACD(3,3) Parameter Estimates Using EVIEWS GARCH Module 423
Appendix B: VAR Parameter Estimates 423
References 424

8 Simulated Score Methods and Indirect Inference for Continuous-time Models
A. Ronald Gallant and George Tauchen

1. Introduction and Overview 428
2. Estimation and Model Evaluation 431
 2.1. Overview 431
 2.1.1. Simulated Score Estimation 431
 2.1.2. Indirect Inference Estimation 433
 2.2. Details 435
3. Projection: General Guidelines on the Score Generator 439
 3.1. An Initial Look at Efficiency 439
 3.2. Misspecification 440
 3.3. Nonnested Models 442
 3.4. Dynamic Stability 442
4. A General Purpose Score Generator 443
 4.1. Efficiency Comparisons 443
 4.2. SNP: A General Purpose Score Generator 448
5. Reproduction: Analysis of Postestimation Simulations 453
 5.1. Simple Illustration of Volatility Extraction 453
 5.2. General Theory of Reproduction 455
6. Applications 459
 6.1. Multifactor Stochastic Volatility Models for Stock Returns 460
 6.1.1. Jump Diffusions 460
 6.1.2. Alternative Models 461
 6.1.3. Volatility Index Models 461
 6.2. Term Structure of Interest Rates 462
 6.2.1. Affine Term Structure Models 462
 6.2.2. Regime-Switching Affine Term Structure Models 463
 6.2.3. Nonaffine Models 464
 6.3. Exchange Rates 464
 6.4. General Equilibrium Models 465
 6.5. Additional Applications 465
7. Software and Practical Issues 466
 7.1. Code 466
 7.2. Troubleshooting, Numerical Stability, and Convergence Problems 467
 7.2.1. Start Value Problems and Scaling 467
 7.2.2. Enforcing Dynamic Stability 468
 7.2.3. Bulletproofing the Data Generating Process 468
 7.3. The Chernozukov-Hong Method 469
8. Conclusion 472
References 473

9 The Econometrics of Option Pricing 479
 René Garcia, Eric Ghysels, and Eric Renault
1. Introduction and Overview 480
2. Pricing Kernels, Risk-Neutral Probabilities, and Option Pricing 483
 2.1. Equivalent Martingale Measure and Volatility Smile 484
 2.2. How to Graph the Smile? 486
 2.3. Stochastic Discount Factors and Pricing Kernels 488
 2.4. Black-Scholes-Implied Volatility as a Calibrated Parameter 491
 2.5. Black-Scholes-Implied Volatility as an Expected Average Volatility 492
 2.6. Generalized Black-Scholes Option Pricing Formula 494
3. Modeling Asset Price Dynamics via Diffusions for the Purpose of Option Pricing 496
 3.1. The Affine Jump-Diffusion Class of Models 497
 3.1.1. Models with a Single Volatility Factor 497
 3.1.2. Multiple Volatility Factors 500
 3.2. Other Continuous-Time Processes 501
 3.2.1. Nonaffine Index Models 501
3.2.2. Lévy Processes and Time Deformation 502
3.2.3. Long-Memory in Continuous Time 504
3.3. Pricing Options Based on Objective Parameters 508
4. Implied Risk-Neutral Probabilities 510
4.1. Econometric Model of Option Pricing Errors 511
4.2. Maximum Likelihood-Based Inference 514
4.3. Implied-State GMM 520
4.4. Joint Estimation of Risk-Neutral and Objective Distributions 522
5. Nonparametric Approaches 524
5.1. Semiparametric Approaches to Derivative Pricing 525
5.2. Canonical Valuation and Implied Binomial Trees 526
5.2.1. Canonical Valuation 527
5.2.2. Implied Binomial Trees 528
5.2.3. A SDF Alternative to Implied Binomial Trees 530
5.3. Comparing the Unconditional and Conditional Methodologies for Extracting Risk-Neutral Distributions 531
5.4. Extended Method of Moments 532
5.5. Other SNP Estimators 536
5.6. An Economic Application of Nonparametric Methods: Extraction of Preferences 539
6. Conclusion 542
Acknowledgments 544
References 544

10 Value at Risk 553
Christian Gourieroux and Joann Jasiak
1. Introduction 554
2. Value at Risk 556
2.1. Definition 557
2.2. Examples 559
2.2.1. The Gaussian VaR 559
2.2.2. Comparison of Tails 560
2.2.3. Term Structure of the VaR 562
2.3. Conditional and Marginal VaR 563
2.4. Sensitivity of the VaR 564
3. Estimation of the Marginal VaR 565
3.1. Historical Simulation 565
3.2. Parametric Methods 569
3.3. Semiparametric Analysis 569
3.3.1. Estimation from Sample Quantiles 570
3.3.2. The Use of the Hill Estimator 571
3.4. The i.i.d. Assumption 572
11 Measuring and Modeling Variation in the Risk-Return Trade-off
Martin Lettau and Sydney C. Ludvigson

1. Introduction 618
2. The Conditional Mean of Stock Returns 622
 2.1. Origins of Predictability Evidence 622
 2.2. Linking the Macroeconomy to Conditional Mean Excess Returns 625
 2.2.1. Consumption, Aggregate Wealth, and Expected Stock Market Returns 626
 2.3. Popular Predictor Variables for Excess Stock Returns 632
 2.4. The Forecastability of Stock Market Returns: Empirical Evidence 633
 2.5. Statistical Issues with Forecasting Returns 638
 2.5.1. Problems with Overlapping Data 638
 2.5.2. Problems with Persistent, Predetermined Regressors 641
 2.5.3. Problems with Interpreting Long-Horizon Forecasts 643
 2.6. Conceptual Issues with Forecasting Returns 644
 2.6.1. Expected Returns versus Average Realized Returns 644
 2.6.2. Cointegration and Return Forecasting 645
 2.6.3. Use of Macroeconomic Data in Empirical Asset Pricing 647
 2.6.4. When Is "Look-Ahead Bias" a Concern? 648
 2.6.5. Structural Change 650
 2.7. In-Sample versus Out-of-Sample Prediction 651
3. The Conditional Volatility of Stock Returns and Its Relation to the Conditional Mean 656
 3.1. Updated Evidence on Risk and Return 658
 3.1.1. Econometric Framework 660
 3.1.2. Forecasts of Volatility 663
 3.1.3. Empirical Results on Risk and Return 668
4. The Conditional Sharpe Ratio 672
5. Conclusion 681
Appendix: Data Description 682
Acknowledgments 684
References 684

12 Affine Term Structure Models 691
Monika Piazzesi

1. Introduction 692
 1.1. Overview 692
 1.2. Why Care About Bond Yields? 694
 1.3. Why Care About Cross-Equation Restrictions? 695
2. Basics 696
 2.1. Bond Pricing in Continuous Time 696
 2.2. Local Expectations Hypothesis 698
7.5.2. Predictability of Excess Returns 743
7.5.3. Affine Diffusions Under Both Measures 745
7.5.4. Risk-Neutral Affine Diffusions with Nonlinear Data-Generating Process 746
7.5.5. More on Nonlinearities 747
7.6. Unconditional Second Moments (Vol Curve) 747
7.7. Conditional Second Moments (Stochastic Vol) 749
7.8. Higher Order Moments (Jumps and Regimes) 751
7.9. Seasonalities (Settlement Wednesdays and Macro Releases) 753
7.10. Fitting Errors at the Short End 753
8. Joint System with Other Macroeconomic Variables 754
 8.1. Monetary Policy 755
 8.2. Inflation 756
 8.3. Other Macroeconomic Variables 757
Acknowledgments 758
References 758
Index 767