Monte Carlo Methods and Models in Finance and Insurance

Ralf Korn
Elke Korn
Gerald Kroisandt
Contents

List of Algorithms xi

1 Introduction and User Guide 1
 1.1 Introduction and concept ... 1
 1.2 Contents ... 2
 1.3 How to use this book ... 3
 1.4 Further literature .. 3
 1.5 Acknowledgments .. 4

2 Generating Random Numbers 5
 2.1 Introduction .. 5
 2.1.1 How do we get random numbers? 5
 2.1.2 Quality criteria for RNGs 6
 2.1.3 Technical terms ... 8
 2.2 Examples of random number generators 8
 2.2.1 Linear congruential generators 8
 2.2.2 Multiple recursive generators 12
 2.2.3 Combined generators .. 15
 2.2.4 Lagged Fibonacci generators 16
 2.2.5 F_2-linear generators 17
 2.2.6 Nonlinear RNGs .. 22
 2.2.7 More random number generators 24
 2.2.8 Improving RNGs ... 24
 2.3 Testing and analyzing RNGs .. 25
 2.3.1 Analyzing the lattice structure 25
 2.3.2 Equidistribution ... 26
 2.3.3 Diffusion capacity .. 27
 2.3.4 Statistical tests ... 27
 2.4 Generating random numbers with general distributions 31
 2.4.1 Inversion method ... 31
 2.4.2 Acceptance-rejection method 33
 2.5 Selected distributions .. 36
 2.5.1 Generating normally distributed random numbers 36
 2.5.2 Generating beta-distributed RNs 38
 2.5.3 Generating Weibull-distributed RNs 38
 2.5.4 Generating gamma-distributed RNs 39
 2.5.5 Generating chi-square-distributed RNs 42
2.6 Multivariate random variables .. 43
 2.6.1 Multivariate normals ... 43
 2.6.2 Remark: Copulas .. 44
 2.6.3 Sampling from conditional distributions 44
2.7 Quasirandom sequences as a substitute for random sequences 45
 2.7.1 Halton sequences .. 47
 2.7.2 Sobol sequences .. 48
 2.7.3 Randomized quasi-Monte Carlo methods 49
 2.7.4 Hybrid Monte Carlo methods .. 50
 2.7.5 Quasirandom sequences and transformations into other random distributions ... 50
2.8 Parallelization techniques ... 51
 2.8.1 Leap-frog method ... 51
 2.8.2 Sequence splitting .. 52
 2.8.3 Several RNGs ... 53
 2.8.4 Independent sequences .. 53
 2.8.5 Testing parallel RNGs .. 53

3 The Monte Carlo Method: Basic Principles .. 55
 3.1 Introduction ... 55
 3.2 The strong law of large numbers and the Monte Carlo method 56
 3.2.1 The strong law of large numbers 56
 3.2.2 The crude Monte Carlo method 57
 3.2.3 The Monte Carlo method: Some first applications 60
 3.3 Improving the speed of convergence of the Monte Carlo method: Variance reduction methods ... 65
 3.3.1 Antithetic variates ... 66
 3.3.2 Control variates ... 70
 3.3.3 Stratified sampling ... 76
 3.3.4 Variance reduction by conditional sampling 85
 3.3.5 Importance sampling .. 87
 3.4 Further aspects of variance reduction methods 97
 3.4.1 More methods .. 97
 3.4.2 Application of the variance reduction methods 100

4 Continuous-Time Stochastic Processes: Continuous Paths 103
 4.1 Introduction ... 103
 4.2 Stochastic processes and their paths: Basic definitions 103
 4.3 The Monte Carlo method for stochastic processes 107
 4.3.1 Monte Carlo and stochastic processes 107
 4.3.2 Simulating paths of stochastic processes: Basics 108
 4.3.3 Variance reduction for stochastic processes 110
 4.4 Brownian motion and the Brownian bridge 111
 4.4.1 Properties of Brownian motion 113
 4.4.2 Weak convergence and Donsker's theorem 116
4.4.3 Brownian bridge .. 120
4.5 Basics of Itô calculus .. 126
 4.5.1 The Itô integral .. 126
 4.5.2 The Itô formula ... 133
 4.5.3 Martingale representation and change of measure 135
4.6 Stochastic differential equations 137
 4.6.1 Basic results on stochastic differential equations 137
 4.6.2 Linear stochastic differential equations 139
 4.6.3 The square-root stochastic differential equation 141
 4.6.4 The Feynman-Kac representation theorem 142
4.7 Simulating solutions of stochastic differential equations . 145
 4.7.1 Introduction and basic aspects 145
 4.7.2 Numerical schemes for ordinary differential equations 146
 4.7.3 Numerical schemes for stochastic differential equations 151
 4.7.4 Convergence of numerical schemes for SDEs 156
 4.7.5 More numerical schemes for SDEs 159
 4.7.6 Efficiency of numerical schemes for SDEs 162
 4.7.7 Weak extrapolation methods 163
 4.7.8 The multilevel Monte Carlo method 167
4.8 Which simulation methods for SDE should be chosen? 173

5 Simulating Financial Models: Continuous Paths 175
 5.1 Introduction ... 175
 5.2 Basics of stock price modelling 176
 5.3 A Black-Scholes type stock price framework 177
 5.3.1 An important special case: The Black-Scholes model . 180
 5.3.2 Completeness of the market model 183
 5.4 Basic facts of options 184
 5.5 An introduction to option pricing 187
 5.5.1 A short history of option pricing 187
 5.5.2 Option pricing via the replication principle 187
 5.5.3 Dividends in the Black-Scholes setting 195
 5.6 Option pricing and the Monte Carlo method in the Black-
 Scholes setting ... 196
 5.6.1 Path-independent European options 197
 5.6.2 Path-dependent European options 199
 5.6.3 More exotic options 210
 5.6.4 Data preprocessing by moment matching methods 211
 5.7 Weaknesses of the Black-Scholes model 213
 5.8 Local volatility models and the CEV model 216
 5.8.1 CEV option pricing with Monte Carlo methods 219
 5.9 An excursion: Calibrating a model 221
 5.10 Aspects of option pricing in incomplete markets 222
 5.11 Stochastic volatility and option pricing in the Heston model 224
 5.11.1 The Andersen algorithm for the Heston model 227
5.11.2 The Heath-Platen estimator in the Heston model 232
5.12 Variance reduction principles in non-Black-Scholes models 238
5.13 Stochastic local volatility models 239
5.14 Monte Carlo option pricing: American and Bermudan options 240
 5.14.1 The Longstaff-Schwartz algorithm and regression-based variants for pricing Bermudan options 243
 5.14.2 Upper price bounds by dual methods 250
5.15 Monte Carlo calculation of option price sensitivities 257
 5.15.1 The role of the price sensitivities 257
 5.15.2 Finite difference simulation 258
 5.15.3 The pathwise differentiation method 261
 5.15.4 The likelihood ratio method 264
 5.15.5 Combining the pathwise differentiation and the likelihood ratio methods by localization 265
 5.15.6 Numerical testing in the Black-Scholes setting 267
5.16 Basics of interest rate modelling 269
 5.16.1 Different notions of interest rates 270
 5.16.2 Some popular interest rate products 271
5.17 The short rate approach to interest rate modelling 275
 5.17.1 Change of numeraire and option pricing: The forward measure 276
 5.17.2 The Vasicek model 278
 5.17.3 The Cox-Ingersoll-Ross (CIR) model 281
 5.17.4 Affine linear short rate models 283
 5.17.5 Perfect calibration: Deterministic shifts and the Hull-White approach 283
 5.17.6 Log-normal models and further short rate models 287
5.18 The forward rate approach to interest rate modelling 288
 5.18.1 The continuous-time Ho-Lee model 289
 5.18.2 The Cheyette model 290
5.19 LIBOR market models 293
 5.19.1 Log-normal forward-LIBOR modelling 294
 5.19.2 Relation between the swaptions and the cap market 297
 5.19.3 Aspects of Monte Carlo path simulations of forward-LIBOR rates and derivative pricing 299
 5.19.4 Monte Carlo pricing of Bermudan swaptions with a parametric exercise boundary and further comments 305
 5.19.5 Alternatives to log-normal forward-LIBOR models 308
5.16 Basics of interest rate modelling 269

6 Continuous-Time Stochastic Processes: Discontinuous Paths 309
6.1 Introduction 309
6.2 Poisson processes and Poisson random measures: Definition and simulation 310
 6.2.1 Stochastic integrals with respect to Poisson processes 312
6.3 Jump-diffusions: Basics, properties, and simulation 315
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5.1 The individual model</td>
<td>404</td>
</tr>
<tr>
<td>8.5.2 The collective model</td>
<td>405</td>
</tr>
<tr>
<td>8.5.3 Rare event simulation and heavy-tailed distributions</td>
<td>410</td>
</tr>
<tr>
<td>8.5.4 Dependent claims: An example with copulas</td>
<td>413</td>
</tr>
<tr>
<td>8.6 Markov chain Monte Carlo and Bayesian estimation</td>
<td>415</td>
</tr>
<tr>
<td>8.6.1 Basic properties of Markov chains</td>
<td>415</td>
</tr>
<tr>
<td>8.6.2 Simulation of Markov chains</td>
<td>419</td>
</tr>
<tr>
<td>8.6.3 Markov chain Monte Carlo methods</td>
<td>420</td>
</tr>
<tr>
<td>8.6.4 MCMC methods and Bayesian estimation</td>
<td>427</td>
</tr>
<tr>
<td>8.6.5 Examples of MCMC methods and Bayesian estimation in actuarial mathematics</td>
<td>429</td>
</tr>
<tr>
<td>8.7 Asset-liability management and Solvency II</td>
<td>433</td>
</tr>
<tr>
<td>8.7.1 Solvency II</td>
<td>433</td>
</tr>
<tr>
<td>8.7.2 Asset-liability management (ALM)</td>
<td>435</td>
</tr>
</tbody>
</table>

References 441

Index 459