SECTION 1 Total System and Implementation Steps

Chapter 1 Total Framework of the Toyota Production System 3

§ 1 Primary Purpose ... 3
 Profit through Cost Reduction 3
 Elimination of Overproduction 4
 Quantity Control, Quality Assurance, Respect for Humanity ... 6
 Just-in-Time and Autonomation 6
 Flexible Workforce and Originality and Ingenuity 8
 JIT Production ... 8

§ 2 Kanban System .. 9
 Maintaining JIT by the Kanban System 9
 Information via Kanban .. 10
 Adapting to Changing Production Quantities 10

§ 3 Production Smoothing .. 11
 Production in Accordance with Market Demand 11
 Determining the Daily Production Sequence 12
 Adapting to Product Variety by General-Purpose Machines ... 13

§ 4 Shortening Setup Time .. 13
§ 5 Process Layout for Shortened Lead Times and One-Piece Production ... 14
§ 6 Standardization of Operations ... 15
§ 7 Autonomation ... 16
 Autonomous Defects Control System 16
 Visible Control System ... 17
§ 8 Improvement Activities ... 17
§ 9 The Goal of TPS ... 18
 The Ultimate Goal of TPS .. 18
 To Improve Margin Ratio, Costs Must Be Reduced, since Profit = Revenue - Costs .. 18
 To Improve Turnover Ratio, Lead Time Must Be Reduced .. 19
Another Measure of the Integrated Goal:
 "JIT Cash-Flows" .. 20
Motivational Effects of the JIT Cash Flow Measure 21
 Control Measure at the Top Management Level of the Whole Supply-Chain ... 21
 Control Measure at the Level of Plant Managers and Supervisors .. 22
 Control Measures at the Level of Shop Floor Operators ... 23
§ 10 Summary .. 23

Chapter 2 Implementation Steps for the Toyota Production System .. 25
§ 1 Introductory Steps to the Toyota Production System 25
 Step 1: Upper Management Plays a Key Role 25
 Step 2: Establish a Project Team ... 26
 Step 3: Prepare an Implementation Schedule and Set Goals to Be Achieved within the Schedule 26
 Step 4: Introduce a Pilot Project ... 26
 Step 5: Move from a Downstream Process to an Upstream Process ... 26
 Application Order of JIT Techniques 27
§ 2 Introduction of JIT at Toyo Aluminum—A Case Study ... 29
SECTION 2 Subsystems

Chapter 3 Adaptable Kanban System Maintains Just-In-Time Production

§ 1 Pull System for JIT Production

§ 2 What Is a Kanban?
 How to Use Various Kanban
 Two Methods of Utilizing Production-Ordering Kanban

§ 3 Kanban Rules
 Rule 1—The Subsequent Process Should Withdraw the Necessary Products from the Preceding Process in the Necessary Quantities at the Necessary Point in Time
 Whirligig
 Constant-Cycle and Round-Tour Mixed-Loading System

Rule 2—The Preceding Process Should Produce Its Products in the Quantities Withdrawn by the Subsequent Process

Rule 3—Defective Products Should Never Be Conveyed to the Subsequent Process

Rule 4—The Number of Kanban Should Be Minimized

Rule 5—Kanban Should Be Used to Adapt to Small Fluctuations in Demand (Fine-Tuning of Production by Kanban)

§ 4 Other Types of Kanban
 Express Kanban
 Emergency Kanban
 Job-Order Kanban
 Through Kanban
 Common Kanban
 Cart or Truck as a Kanban
 Label
 Full-Work System
Chapter 4

Supplier Kanban and the Sequence Schedule Used by Suppliers

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 1</td>
<td>Monthly Information and Daily Information</td>
<td>60</td>
</tr>
<tr>
<td>§ 2</td>
<td>Later Replenishment System by Kanban</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>How the Supplier Kanban Should Be Applied to the Supplier</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>How the In-Process Kanban Will Circulate in the Supplier’s Plant</td>
<td>63</td>
</tr>
<tr>
<td>§ 3</td>
<td>Sequenced Withdrawal System by the Sequence Schedule</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Store Space and a Variety of Products</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>How the Sequence Schedule Is Used in the Assembly Lines of a Supplier</td>
<td>68</td>
</tr>
<tr>
<td>§ 4</td>
<td>Problems and Countermeasures in Applying the Kanban System to Subcontractors</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Criticism by the Communist Party against the Toyota Production System</td>
<td>70</td>
</tr>
<tr>
<td>§ 5</td>
<td>Guidance by the Fair Trade Commission Based on the Subcontractors Law and the Anti-monopoly Law</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>How Toyota Is Coping with Criticism</td>
<td>74</td>
</tr>
<tr>
<td>§ 6</td>
<td>Supplier Kanban Circulation in the Paternal Manufacturer</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Inventory Quantity of Purchased Parts</td>
<td>82</td>
</tr>
<tr>
<td>§ 7</td>
<td>Practical Examples of Delivery System and Delivery Cycle</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Number of Supply Runs and Delivery Schedule of Each Plant</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Kanban System and Adaptation to Emergency</td>
<td>86</td>
</tr>
</tbody>
</table>

Chapter 5

Smoothed Production Helps Toyota Adapt to Demand Changes and Reduce Inventory

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 1</td>
<td>Smoothing of the Total Production Quantity</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Demand Fluctuation and Production Capacity Plan</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Adapting to Increased Demand</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Adapting to Decreased Demand</td>
<td>93</td>
</tr>
<tr>
<td>§ 2</td>
<td>Smoothing Each Model’s Production Quantity</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Sequence Schedule for Introducing Models</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Sequence Schedule Sheet Sample</td>
<td>97</td>
</tr>
</tbody>
</table>
Contents

- Sequenced Withdrawal of Engines 97
- Two Phases of Production Smoothing 99
- Flexible Machinery Supporting Smoothed Production 99
- § 3 Comparison of the Kanban System with MRP 101
- § 4 Summary of the Concept of Production Smoothing 102

Chapter 6
The Information System for Supply Chain Management between Toyota, Its Dealers, and Parts Manufacturers ... 105

- § 1 The Order Entry Information System 105
 - Monthly Production System 105
 - Master Production Schedule and Parts Requirement Forecast .. 105
 - Daily Production System 106
 - The Product Delivery Schedule and Sequence Schedule ... 106
 - The Sequenced Production Schedule 109
 - Online System at the Distribution Stage 109
- § 2 The Information System between Toyota and Parts Manufacturers ... 110
 - Parts Requirement Forecast Table 110
 - Network System within Toyota Group Using VAN 112
 - The Parts Distribution System 113
- § 3 New Toyota Network System (TNS) 114
 - Establishment of Type II Carrier by Toyota 114
 - Toyota’s New TNS (Toyota Network System) 116
 - Parts Procurement Networks: JNX and WARP 117
- § 4 Production Planning System at Nissan 118
 - Nissan’s Ordering Systems from Parts Suppliers 121
 - Daily Order ... 121
 - 10-Day Order .. 121
 - Synchronized Order ... 122
 - Special Order ... 122

Chapter 7
How Toyota Shortened Production Lead Time 123

- § 1 Four Advantages of Shortening Lead Time 123
- § 2 Components of Production Lead Time in a Narrow Sense .. 124
§ 3 Shortening Processing Time through Single-Unit Production and Conveyance
Functional Division of Labor Using Specialized Workers with “Lot” Production and Conveyance
Product-Flow Layout with Multi-Skilled Workers for One-Piece Production
Comparison between Functional Division of Processes and Multi-Process Handling: A Summary
Outline of Toyota’s Plants
Shortening Processing Time through Small-Sized Lot Production
Advantages of Small Lots in the Production of Different Products
Control Chart of Lot Size Reduction
§ 4 Shortening Waiting Time and Conveyance Time
How to Balance Each Process
Shortening Waiting Time Caused by Pre-Process Lot Size
Two Steps for Conveyance Improvement
§ 5 A Broad Approach to Reducing Production Lead Time
Five Principles for the Ideal Factory Automation

Chapter 8 Machine Layout, Multi-Functional Workers, and Job Rotation Help Realize Flexible Workshops
§ 1 Shojinka: Meeting Demand through Flexibility
§ 2 Layout Design: The U-Turn Layout
Improper Layouts
Bird Cage Layouts
Isolated Island Layouts
Linear Layouts
Combining U-Form Lines
Cellular Manufacturing
§ 3 Attaining Shojinka through Multi-Functional Workers
Cultivating Multi-Functional Workers through Job Rotation
Step 1: Rotation of Supervisors
Step 2: Rotation of Workers within Each Shop........... 154
Step 3: Job Rotation Several Times per Day 156
Additional Advantages of Job Rotation 158
Importance of the Line Chief: Giving Rest Time
and Job Rotation to Workers 159

Chapter 9 One-Piece Production in Practice 161
§ 1 Requirements for One-Piece Production 161
§ 2 Resistance to Working Standing Up 162
§ 3 Resistance to Multi-Skilling 164
§ 4 Barriers to Autonomation 164
 How to Achieve Autonomation (in the Sense
 of Decoupling Operators from Their Machines) 165
§ 5 Attaching Castors 167
§ 6 Smoothed Production 168
§ 7 An Example of Improvement for One-Piece
 Flow: A Factory Producing Cabinets
 for Use as Flat-Screen Television Stands 169

Chapter 10 Standard Operations Can Attain Balanced
Production with Minimum Labor 171
§ 1 Goals and Elements of Standard Operations 171
§ 2 Determining the Components of Standard
 Operations .. 172
 Determining the Cycle Time 173
 Determining the Completion Time per Unit 173
 Determining the Standard Operations Routine 175
 Yo-i-don System ... 178
 One-Shot Setup .. 182
 Determining the Standard Quantity
 of Work-in-Process 183
 Preparing the Standard Operations Sheet 184
§ 3 Proper Training and Follow-Up: The Key
 to Implementing a Successful System 185

Chapter 11 Reduction of Setup Time—Concepts and Techniques 187
§ 1 Effects of Shortening the Setup Time 187
§ 2 Setup Concepts ... 188
 Concept 1: Separate the Internal Setup from the External Setup 188
 Concept 2: Convert as Much as Possible of the Internal Setup to the External Setup 188
 Concept 3: Eliminate the Adjustment Process 189
 Concept 4: Abolish the Setup Step Itself 191
§ 3 Concept Application .. 192
 Technique 1: Standardize the External Setup Actions ..192
 Technique 2: Standardize Only the Necessary Portions of the Machine 192
 Technique 3: Use a Quick Fastener 192
 Technique 4: Use a Supplementary Tool 194
 Technique 5: Use Parallel Operations 195
 Technique 6: Use a Mechanical Setup System 196

Chapter 12 5S—Foundation for Improvements 197
 § 1 5S Is to Remove Organizational Slack 197
 § 2 Visual Control ... 200
 Visual Seiri ... 201
 Indicator Plate for Visual Seiton .. 203
 Step 1—Decide Item Placement .. 204
 Step 2—Prepare the Container .. 204
 Step 3—Indicate the Position for Each Item 204
 Step 4—Indicate the Item Code and Its Quantity 204
 Step 5—Make Seiton a Habit .. 205
 § 3 Practical Rules for Seiton ... 207
 Seiton of WIP ... 207
 Rule 1: First-In, First-Out .. 207
 Rule 2: Setup for Easy Handling 207
 Rule 3: Regard Stock Space as Part of Manufacturing Line 208
 Seiton of Jigs and Tools ... 210
 Seiton of the Cutting Instruments, Measures, and Oil 211
 Visual Controls for Limit Standards 213
 § 4 Seiso, Seiketsu, Shitsuke .. 214
 § 5 Promotion of 5S System .. 216
 Point Photography ... 217
Chapter 13 Autonomous Defect Control Ensures Product Quality...

§ 1 Development of Quality Management Activities ...219
§ 2 Statistical Quality Control ...221
§ 3 Autonomation ...223
§ 4 Autonomation and the Toyota Production System ..225
 Methods for Stopping the Line ...225
 Mechanical Checks in Aid of Human Judgment ...227
 Mistake-Proofing Systems for Stopping the Line ..228
 Contact Method ..229
 Altogether Method ...229
 Action Step Method ...229
 Visual Controls ..231
 Andon and Call Lights ...231
 Standard Operations Sheets and Kanban Tickets ..232
 Digital Display Panels ...234
 Store and Stock Indicator Plates ...234
§ 5 Robotics ..235
 Robots and the Toyota Production System ..236
§ 6 Company-Wide Quality Control ..236
 All Departments Participate in QC ...237
 All Employees Participate in QC ...238
 QC Is Fully Integrated with Other Related Company Functions238

Chapter 14 Cross-Functional Management to Promote Company-Wide Quality Assurance and Cost Management ...239

§ 1 Introduction ...239
§ 2 Quality Assurance ...240
§ 3 Cost Management ...241
 Relations among Departments, Steps in Business Activities, and Functions244
§ 4 Organization of the Cross-Functional Management System245
 Business Policy and Functional Management ..250
 Business Policy Development ..252
 Critical Considerations for Functional Management ...253
 Advantages of Functional Management ...254
Chapter 15 Kaizen Costing

§ 1 Concept of Kaizen Costing
§ 2 Two Types of Kaizen Costing
§ 3 Preparing the Budget
§ 4 Determination of the Target Amount of Cost Reduction
§ 5 Kaizen Costing through "Management by Objectives"
§ 6 Measurement and Analysis of Kaizen Costing Variances

Chapter 16 Material Handling in an Assembly Plant

§ 1 The Parts Supply System in an Assembly Plant
§ 2 A System for Supplying Parts in Sets (the SPS, or Set Parts System)
 The SPS System
 The Rationale for SPS, and Its Benefits
§ 3 "Empty-Handed" Transportation
 Rationalizing the Reception of Outsourced Parts and the Removal of Empty Boxes
 Movement of the Site Materials Handler
 Area for Storing Each Parts Manufacturer's Empty Pallets, and Trolleys with Tractor
 Movement of the Parts Manufacturers' Drivers: Coupling Station for the Trolleys Used to Bring the Parts in to Each of the Assembly Lines

Chapter 17 Further Practical Study of the Kanban System

§ 1 Maximum Number of Production Kanban to be Stored
§ 2 Triangular Kanban and Material Requisition Kanban on a Press Line
 The Roulette System
§ 3 Control of Tools and Jigs through the Kanban System
§ 4 JIT Delivery System Can Ease Traffic Congestion and the Labor Shortage
JIT Will Contribute to Rationalization of Physical Distribution .. 286
Genuine JIT System Has Prerequisite Conditions .. 287
External Environment for Physical Distribution Should Be Rationalized .. 288

Chapter 18 Smoothing Kanban Collection .. 291
§ 1 Obstacles to Collecting Smoothed Numbers of Kanban .. 291
§ 2 Relationship between Smoothed Collection of Kanban and Parts Delivery .. 292
§ 3 Smoothing Schedule for the Timing of Kanban Collection .. 293
§ 4 Inventions of Kanban Posts at the Production Site, Parts Storage Site in the Assembling Factory .. 295
§ 5 Post-Office Mechanism for Outgoing Supplier Kanban .. 296

Chapter 19 Applying the Toyota Production System Overseas .. 299
§ 1 Conditions for Internationalizing the Japanese Production System .. 300
§ 2 Advantages of the Japanese Maker-Supplier Relationship .. 301
§ 3 Reorganization of External Parts Makers in the United States .. 302
§ 4 Solution for Geographical Problems Involving External Transactions .. 305
§ 5 External Transactions of NUMMI .. 306
§ 6 Industrial Relations Innovations .. 308
 Prerequisites of Flexible Labor Systems .. 308
 Prerequisites of Workplace Improvements .. 310
 Features of New Labor Contracts .. 310
 Point 1 .. 310
 Point 2 .. 312
 Point 3 .. 312
§ 7 Conclusion .. 314
SECTION 3 Quantitative Techniques

Chapter 20 Sequencing Method for the Mixed-Model Assembly Line to Realize Smoothed Production 317

§ 1 Goals of Controlling the Assembly Line 317
Goal One: Work Load Streamlining 318
Goal Two and the Sequencing Model for Parts Usage Streamlining 318

§ 2 Goal-Chasing Method: A Numerical Example 320
Evaluation of the Goal-Chasing Method 324

§ 3 The Toyota Approach: A Simplified Algorithm 326
Sequence Scheduling in the Practice: An Example 328

§ 4 Simultaneous Achievement of Two Simplifying Goals 329

Chapter 21 New Sequence Scheduling Method for Smoothing 331

§ 1 Basic Logic of Sequence Scheduling 331
Assisting Rules 333

§ 2 Sequence Scheduling Using Artificial Intelligence 337
Five Patterns for Deciding the Sequence Schedule 340

§ 3 Diminishing Differences between Product Lead Times 342

Chapter 22 Computation of the Number of Kanban 347

§ 1 Computation of the Number of Kanban 347
§ 2 The Constant-Cycle Withdrawal System for Computing the Number of Inter-Process Withdrawal Kanban 348
Numerical Example: Number of Inter-Process Withdrawal Kanban in the Constant-Cycle System 349

§ 3 Computation of the Number of Supplier Kanban 354
Supplier Kanban Using the “Constant-Cycle Withdrawal System” 354
Computation of Supplier Kanban 354
Numerical Example for Computing the Number of Supplier Kanban 357
§ 4 Constant-Quantity Withdrawal System for Computing the Number of Inter-Process Withdrawal Kanban

General Formula for the "Constant-Quantity Withdrawal System" 358
Numerical Example for Computing the Number of "Inter-Process Withdrawal Kanban" Based on the Constant-Quantity Withdrawal System 359
Effect of Lead Time Reduction through Kaizen Activities on the Number of Kanban 360
Effect of Increasing the Capacity of Parts Boxes Because of Smaller Parts Size 360

§ 5 Computation of the Number of Production-Ordering Kanban 361
Computation of the Number of Production Kanban Under the "Constant-Cycle Withdrawal System" 361
Computation of the Number of Production Kanban under the Constant-Quantity Withdrawal System 362
Ping-Pong Ball as a Production Kanban 362
Use of Production Kanban as a Two-Bin System 363
Triangular Kanban of the Stamping Process 365

§ 6 Computation of the Re-order Point 365

§ 7 Determination of Lot-Size 365

§ 8 Changes in the Number of Kanban 366
Changes in the Number of Supplier Kanban 367

§ 9 Maintaining the Necessary Number of Kanban 368
Maximum and Minimum Numbers of the Parts Boxes on the Indicator Plate at the Parts Shelf 368
Automatic System for Pushing Aside Excess Kanban 369
Discovery of Lost Kanban 370

Chapter 23 New Developments in e-Kanban 371

§ 1 The Two Types of e-Kanban 371
§ 2 Sequenced Withdrawal Method e-Kanban: Sequenced Withdrawal of Parts Matched to the Vehicle Loading Sequence Schedule 371
The Evolution of the Kanban 371
e-Kanban 372
Chapter 24 Kanban Supporting Information Systems

§ 1 Toyota Production System Is Supported by Many Information Systems

§ 2 Material Requirement Planning Subsystem

§ 3 Kanban Master Planning Subsystem

 Internally Produced Parts

 Externally Produced Parts

 Material Usage

§ 4 Process-Load Planning Subsystem

§ 5 Accounts Payable and Accounts Receivable Subsystem via Electronic Kanban

§ 6 Actual Performance Measurement Subsystem

SECTION 4 Humanized Production Systems

Chapter 25 Cultivating the Spontaneous Kaizen Mind

§ 1 Developing the Spontaneous Kaizen Mindset: Toward Embedding TPS

§ 2 How Taiichi Ohno Came to Be Daihatsu’s Consultant

§ 3 Create a Difficult Situation and Give People a Problem to Solve

 Case 1: Mixed Assembly of the Starlet (the Successor to the Publica) and Daihatsu’s Own Popular Car

 Case 2: Development of the Ready, Set, Go! System in the Body Welding Process

 Case 3: “You Mustn’t Think, ‘What Am I Going to Teach Them?’”
§ 4 Conclusions

1. Get People to Exercise Their Ingenuity by Creating a Difficult Situation and Giving Them a Problem to Solve

2. Never Lead People by Their Noses to the Solution of the Problem but Always Make Them Come Up with Their Own Improvement Strategies, and Encourage Them to Develop Their Own Problem-Solving Abilities

3. Even If Your Subordinates Fail, Do Not Communicate a Feeling of Frustration to Them; Lend Them a Helping Hand—Leaders Should Become Charismatic People on Whom Others Can Rely

Chapter 26 Improvement Activities Help Reduce the Workforce and Increase Worker Morale

§ 1 Resolving the Conflict between Productivity and Human Factors

§ 2 Improvements in Manual Operations

§ 3 Reduction of the Workforce

§ 4 Improvements in Machinery

Policies in Promoting Jidoka

§ 5 Job Improvements and Respect for Humanity

Give Workers Valuable Jobs

Keep the Lines of Communication within the Organization Open

§ 6 The Suggestion System

§ 7 Kanban and Improvement Activities

§ 8 QC Circles

Structure of the QC Circle

QC Topics and Achievements

Commendation Systems

Education Systems for QC Circles

§ 9 New Technical Personnel System

Labor-Management System for Toyota Shop-Floor Technicians from 1990s Onward

Introduction of Technical Specialists
Chapter 27 Respect-for-Humanity Subsystem in the JIT Production System ... 433
§ 1 Toward Respect for Humanity Based on Ergonomics ... 433
§ 2 Conventional JIT Systems for Respect-for-Humanity Realization ... 433
§ 3 Process Improvements... 435
 Facility Investments Incorporating Automation 435
 Facility Investments Incorporating Respect for Humanity ... 436
 Worker-Compatible Machines .. 436
 Improving Working Conditions 437
 Work Strain Avoidance ... 437
§ 4 Need for Objective Evaluation of Workload 442
§ 5 Conclusion ... 443
§ 6 Appendix: TVAL Model for Measuring Workload 444
 The Model .. 444
 Applying the TVAL Model to Assembly Operations .. 446
 Author’s Comment on the Model 447
Acknowledgments .. 447

Chapter 28 Motivational and Productivity Effects of Autonomous Split-Lines in the Assembly Plant........ 449
§ 1 Why Can Split-Lines Enhance Morale and Productivity? ... 449
§ 2 Problem with the Conventional Assembly Line 450
§ 3 Structure of the Functionally Diversified Autonomous Line ... 452
 Physical Structure of Split-Lines 452
 Personnel Structure of Split-Lines 454
 Training of Line Workers and the Role of the Foreman .. 454
Training Corner and the Assembly Skill

Master Program ... 455

§ 4 The Merits of Autonomous Split-Lines 456
Worker Motivation ... 456
Productivity and Autonomy Based on Risk Spreading 458
Size of Buffer Stocks ... 462
Line Stop Causes ... 462
Unnecessary Inventory Eliminated as Waste 463

Chapter 29 Mini Profit Centers and the JIT System 465

§ 1 Why Do MPC and JIT Systems Fit Each Other Well? 465
§ 2 Comparison and Mutual Extension of Merits between JIT and MPC Systems .. 466
Motivating People in an MPC through the Single Goal of Profit ... 467
Delegation of Larger and Wider Authority 468
Authority for Flexible Exchange of Workers among Various MPCs ... 468
Decentralized Authorities of Each MPD 468
Deployment of Target Profit .. 472
§ 3 Computation Formula for MPC Profit 473
§ 4 Another Type of Mini Profit Center 475
NEC's Line-Company ... 475
§ 5 Local Optimization and Global Optimization 476
§ 6 JIT Production System as a Prerequisite for MPC Accounting ... 478
MPC Accounting Is “Cash-Basis” Accounting 478
§ 7 MPC Accounting Will Provide Motivation to Reduce Excess Inventory ... 479
§ 8 Conclusion ... 480

Appendix: Reinforcing the JIT System after the Disasters of 3/11/2011, Japan .. 481

Bibliography and References ... 487
English Language Literature .. 487
Japanese Literature .. 492

Index ... 501