Optimal control, expectations and uncertainty

Sean Holly
Centre for Economic Forecasting
London Business School

Andrew Hughes Hallett
University of Newcastle
Contents

Preface xi

1 Introduction 1

2 The theory of economic policy and the linear model 12
   2.1 The linear model 12
   2.2 State-space forms 13
      2.2.1 Dynamic equivalences 18
   2.3 The final form 19
   2.4 Controllability 21
      2.4.1 Static controllability 21
      2.4.2 Dynamic (state) controllability 23
      2.4.3 Dynamic (target) controllability 23
      2.4.4 Stochastic controllability 25
      2.4.5 Path controllability 25
      2.4.6 Local path controllability 28
   2.5 An economic example 28

3 Optimal-policy design 31
   3.1 Classical control 31
      3.1.1 Transfer functions 31
      3.1.2 Multivariate feedback control 33
      3.1.3 Stabilisability 34
      3.1.4 The distinction between stabilisation and control 36
      3.1.5 An economic example 37
   3.2 Deterministic optimal control by dynamic programming 39
      3.2.1 A scalar example 43
   3.3 The minimum principle 45
   3.4 Sequential open-loop optimisation 48
   3.5 Uncertainty and policy revisions 50
      3.5.1 First-period certainty equivalence 50
      3.5.2 Certainty equivalence in dynamic programming 51
vi CONTENTS

3.5.3 Restrictions on the use of certainty equivalence 52
3.5.4 Optimal-policy revisions 52
3.5.5 Feedback-policy revisions 55
3.6 Sequential optimisation and feedback-policy rules 56
3.7 Open-loop, closed-loop and feedback-policy rules 58

4 Uncertainty and risk 61
4.1 Introduction 61
4.2 Policy design with information and model uncertainty 64
  4.2.1 Additive uncertainty (information uncertainty) 64
  4.2.2 Multiplicative uncertainty (model uncertainty) 65
  4.2.3 Optimal decisions under multiplicative uncertainty 66
  4.2.4 A dynamic-programming solution under multiplicative uncertainty 67
4.3 The effects of model uncertainty on policy design 68
  4.3.1 Parameter variances 69
  4.3.2 Parameter covariances 71
  4.3.3 Increasing parameter uncertainty 72
4.4 Policy specification under uncertainty 73
4.5 Risk-averse (variance-minimising) policies 75
4.6 Risk-sensitive decisions 77
  4.6.1 Optimal mean-variance decisions 77
  4.6.2 Trading security for performance level 78
  4.6.3 The certainty-equivalent reparameterisation 78
  4.6.4 Risk-sensitive policy revisions 79
  4.6.5 The stochastic inseparability of dynamic risk-sensitive decisions 80
4.7 The Kalman Filter and observation errors 82

5 Risk aversion, priorities and achievements 87
5.1 Introduction 87
5.2 Approximate priorities and approximate-decision rules 88
5.3 Respecifying the preference function 90
5.4 Risk-sensitive priorities: computable von Neumann–Morgenstern utility functions 92
5.5 Risk-bearing in economic theory 95
5.6 The utility-association approach to risk-bearing 97
5.7 Risk management in statistical decisions 99
  5.7.1 The regression analogy 99
  5.7.2 The optimal risk-sensitivity matrix 101
  5.7.3 A simplification 102
5.8 Achievement indices 102
5.9 Conclusions: fixed or flexible decision rules? 103
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td><strong>Non-linear optimal control</strong></td>
<td>105-151</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>105</td>
</tr>
<tr>
<td>6.2</td>
<td>Non-linearities and certainty equivalence</td>
<td>106</td>
</tr>
<tr>
<td>6.3</td>
<td>Non-linear control by linearisation</td>
<td>108-115</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Linearisation by stochastic perturbation</td>
<td>109</td>
</tr>
<tr>
<td>6.3.2</td>
<td>A linearisation in stacked form</td>
<td>110</td>
</tr>
<tr>
<td>6.4</td>
<td>Non-linear control as a non-linear programming problem</td>
<td>111-139</td>
</tr>
<tr>
<td>6.4.1</td>
<td>A modified gradient algorithm</td>
<td>114</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Repeated linearisation</td>
<td>115</td>
</tr>
<tr>
<td>7</td>
<td><strong>The linear rational-expectations model</strong></td>
<td>117-147</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td>7.2</td>
<td>The rational-expectations hypothesis</td>
<td>118</td>
</tr>
<tr>
<td>7.3</td>
<td>The general linear rational-expectations model</td>
<td>120</td>
</tr>
<tr>
<td>7.4</td>
<td>The analytic solution of rational-expectations models</td>
<td>121-139</td>
</tr>
<tr>
<td>7.4.1</td>
<td>A forward-looking solution procedure</td>
<td>122</td>
</tr>
<tr>
<td>7.4.2</td>
<td>The final-form rational-expectations model</td>
<td>123</td>
</tr>
<tr>
<td>7.4.3</td>
<td>A penalty-function solution</td>
<td>124</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Multiperiod solutions</td>
<td>126</td>
</tr>
<tr>
<td>7.4.5</td>
<td>The stochastic properties of rational-expectations solutions</td>
<td>127</td>
</tr>
<tr>
<td>7.5</td>
<td>Terminal conditions</td>
<td>128</td>
</tr>
<tr>
<td>7.6</td>
<td>The numerical solution of rational-expectations models</td>
<td>131-147</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Jacobian methods</td>
<td>132</td>
</tr>
<tr>
<td>7.6.2</td>
<td>General first-order iterative methods</td>
<td>133</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Non-linearities and the evaluation of multipliers</td>
<td>136</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Shooting methods</td>
<td>138</td>
</tr>
<tr>
<td>7.7</td>
<td>Stochastic solutions of non-linear rational-expectations models</td>
<td>139</td>
</tr>
<tr>
<td>7.8</td>
<td>Controllability and the non-neutrality of policy under rational expectations</td>
<td>141-147</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Dynamic controllability</td>
<td>142</td>
</tr>
<tr>
<td>7.8.2</td>
<td>An example: the non-neutrality of money</td>
<td>144</td>
</tr>
<tr>
<td>7.8.3</td>
<td>Conclusion: the stochastic neutrality of policy</td>
<td>147</td>
</tr>
<tr>
<td>8</td>
<td><strong>Policy design for rational-expectations models</strong></td>
<td>148-151</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>148</td>
</tr>
<tr>
<td>8.2</td>
<td>The dynamic-programming solution</td>
<td>148</td>
</tr>
<tr>
<td>8.3</td>
<td>Non-recursive methods</td>
<td>150-151</td>
</tr>
<tr>
<td>8.3.1</td>
<td>A direct method</td>
<td>150</td>
</tr>
<tr>
<td>8.3.2</td>
<td>A penalty-function approach</td>
<td>151</td>
</tr>
</tbody>
</table>
8.4 Time inconsistency
   8.4.1 A scalar demonstration 152
   8.4.2 Suboptimal versus time-inconsistent policies 153
   8.4.3 A simple example 153
   8.4.4 The case of zero policy-adjustment costs 156
8.5 Microeconomic instances of inconsistency 156
8.6 Precommitment, consistent planning and contracts 159
8.7 Rules versus discretion 161
8.8 Sequential optimisation and closed-loop policies 163
   8.8.1 Open-loop decisions 164
   8.8.2 Optimal revisions 165
8.9 Sources of suboptimal decisions 167
8.10 An interpretation of time consistency 168

9 Non-cooperative, full-information dynamic games 169
9.1 Introduction 169
9.2 Types of non-cooperative strategy 171
   9.2.1 The Nash solution 171
   9.2.2 Simplified non-cooperative solutions 173
   9.2.3 Feedback-policy rules 174
9.3 Nash and Stackelberg feedback solutions 175
   9.3.1 The Nash case 176
   9.3.2 The Stackelberg case 179
9.4 The optimal open-loop Nash solution 180
9.5 Conjectural variations
   9.5.1 The conjectural-variations equilibrium 182
9.6 Uncertainty and expectations 184
9.7 Anticipations and the Lucas critique
   9.7.1 A hierarchy of solutions 187
9.8 Stackelberg games: the full-information case 189
9.9 Dynamic games with rational observers
   9.9.1 A direct method 192
   9.9.2 A penalty-function method 194

10 Incomplete information, bargaining and social optima 197
10.1 Introduction 197
10.2 Incomplete information, time inconsistency and cheating 198
10.3 Cooperation and policy coordination
   10.3.1 Cooperative decision-making 203
   10.3.2 Socially optimal decisions 204
   10.3.3 Some examples 206
CONTENTS

10.4 Bargaining strategies
   10.4.1 Feasible policy bargains 212
   10.4.2 Rational policy bargains 212
   10.4.3 Relations between bargaining solutions 214

10.5 Sustaining cooperation
   10.5.1 An example 215
   10.5.2 Cheating solutions 216
   10.5.3 The risk of cheating 217
   10.5.4 Punishment schemes 218

10.6 Reputational equilibria and time inconsistency
   10.6.1 Asymmetric information and uncertainty 221
   10.6.2 Generalisations of reputational effects 224
   10.6.3 Conclusions 225

Notes 227

References 231

Index 241