Implementing Models of Financial Derivatives

Object Oriented Applications with VBA

Nick Webber
Contents

Preface

PART I A PROCEDURAL MONTE CARLO METHOD IN VBA

1 The Monte Carlo Method
 1.1 The Monte Carlo valuation method
 1.2 Issues with Monte Carlo
 1.3 Computational issues
 1.4 Summary
 1.5 Exercises

2 Levels of Programming Sophistication
 2.1 What makes a good application?
 2.2 A high-level design
 2.3 Progressing towards the ideal
 2.4 Summary
 2.5 Exercises

3 Procedural Programming: Level 1
 3.1 Designing a Monte Carlo valuation application
 3.2 Deficiencies of the level 1 code
 3.3 Summary
 3.4 Exercises

4 Validation and Error Handling: Level 2
 4.1 Validation and error handling
 4.2 Encapsulating functionality
 4.3 The level 2 main()
 4.4 Summary
 4.5 Exercises

Preface

PART I A PROCEDURAL MONTE CARLO METHOD IN VBA

1 The Monte Carlo Method
 1.1 The Monte Carlo valuation method
 1.2 Issues with Monte Carlo
 1.3 Computational issues
 1.4 Summary
 1.5 Exercises

2 Levels of Programming Sophistication
 2.1 What makes a good application?
 2.2 A high-level design
 2.3 Progressing towards the ideal
 2.4 Summary
 2.5 Exercises

3 Procedural Programming: Level 1
 3.1 Designing a Monte Carlo valuation application
 3.2 Deficiencies of the level 1 code
 3.3 Summary
 3.4 Exercises

4 Validation and Error Handling: Level 2
 4.1 Validation and error handling
 4.2 Encapsulating functionality
 4.3 The level 2 main()
 4.4 Summary
 4.5 Exercises
Contents

PART II OBJECTS AND POLYMORPHISM 53

5 Introducing Objects: Level 3 55

5.1 Objects in VBA 55
5.2 An example: The *StopWatch* object 63
5.3 Further helpful VBA features 65
5.4 Objects in the Monte Carlo application 67
5.5 Summary 78
5.6 Exercises 78

6 Polymorphism and Interfaces: Level 4 81

6.1 Polymorphism 81
6.2 Interfaces in VBA 84
6.3 Implementing a polymorphic stopwatch 86
6.4 Polymorphism and the Monte Carlo application 88
6.5 Assessment of the polymorphic design 100
6.6 Summary 102
6.7 Exercises 102

7 A Slice-Based Monte Carlo 107

7.1 The revised Monte Carlo application object 107
7.2 The option object 109
7.3 The *evolver* object 113
7.4 Summary 116
7.5 Exercises 116

8 An Embryonic Factory: Level 5 119

8.1 Events 119
8.2 The Level 5 Monte Carlo application 122
8.3 The *Factory* object 127
8.4 Output 130
8.5 Summary 133
8.6 Exercises 133

PART III USING FILES WITH VBA 135

9 Input and Output to File in VBA 137

9.1 File handling in VBA 137
9.2 The *TextStream* and *FileSystemObject* objects 138
9.3 Intrinsic VB language functions 143
9.4 Example: Reading and writing to sequential and random files 145
9.5 Summary 151
9.6 Exercises 151

10 Valuing a Book of Options 153

10.1 Outline of the application 153
10.2 Timings 174
Contents

10.3 Summary 176
10.4 Exercises 176

PART IV POLYMORPHIC FACTORIES IN VBA

11 The VBE Object Library and a Simple Polymorphic Factory 179
11.1 Using the VBE object library 179
11.2 A simple factory illustration 183
11.3 Summary 190
11.4 Exercises 190

12 A Fully Polymorphic Factory: Level 6 193
12.1 Conceptual features 193
12.2 The polymorphic factory 197
12.3 Using the Factory object 206
12.4 Summary 208
12.5 Exercises 209

13 A Semi-Polymorphic Factory: Meta-Classes 211
13.1 The structure of the application 211
13.2 Meta-class objects 212
13.3 The semi-polymorphic factory 216
13.4 Summary 228
13.5 Exercises 228

PART V PERFORMANCE ISSUES IN VBA

14 Performance and Cost in VBA 233
14.1 Arithmetic operations 236
14.2 Procedure calls 242
14.3 Data typing issues 244
14.4 Summary 247
14.5 Exercises 248

15 Level and Performance 249
15.1 Variations of the level 0 application 249
15.2 Effect of level on times 254
15.3 Summary 258
15.4 Exercises 259

16 Evolution and Data Structures 261
16.1 Data structures in VBA 261
16.2 Using VBA containers 264
16.3 Numerical comparisons 271
16.4 Summary 277
16.5 Exercises 277
PART VI VARIANCE REDUCTION IN THE MONTE CARLO METHOD

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Wiener Sample Paths and Antithetic Variates</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>17.1 Generating Wiener sample paths</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>17.2 Antithetic variates</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>17.3 Numerical assessment</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>17.4 Summary</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>17.5 Exercises</td>
<td>289</td>
</tr>
<tr>
<td>18</td>
<td>The Wiener Process and Stratified Sampling</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>18.1 Stratified sampling</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>18.2 Implementing stratified sampling</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>18.3 Numerical assessment</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>18.4 Summary</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>18.5 Exercises</td>
<td>305</td>
</tr>
<tr>
<td>19</td>
<td>Low-Discrepancy Sampling</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>19.1 Low-discrepancy sampling</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>19.2 Implementing LD sampling</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>19.3 Numerical assessment</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>19.4 Summary</td>
<td>316</td>
</tr>
<tr>
<td></td>
<td>19.5 Exercises</td>
<td>316</td>
</tr>
<tr>
<td>20</td>
<td>Variance Reduction with Control Variates</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>20.1 Control variates</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>20.2 Examples of control variates</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>20.3 Auxiliary model control variates</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>20.4 Summary</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>20.5 Exercises</td>
<td>331</td>
</tr>
<tr>
<td>21</td>
<td>Implementing Control Variates</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>21.1 A control variate application</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>21.2 Numerical assessment</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>21.3 Summary</td>
<td>344</td>
</tr>
<tr>
<td></td>
<td>21.4 Exercises</td>
<td>344</td>
</tr>
<tr>
<td>22</td>
<td>Extreme Options and Importance Sampling</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>22.1 Importance Sampling</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>22.2 Valuing an OTM digital option</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>22.3 Choices for the IS density</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>22.4 Implementing importance sampling</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>22.5 Numerical assessment</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>22.6 Summary</td>
<td>368</td>
</tr>
<tr>
<td></td>
<td>22.7 Exercises</td>
<td>368</td>
</tr>
<tr>
<td>23</td>
<td>Combining Variance Reduction Methods</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>23.1 Combining CV and IS</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>23.2 Implementing variance reduction methods in combination</td>
<td>372</td>
</tr>
</tbody>
</table>
Contents

29.3 The early exercise boundary .. 470
29.4 Effect on valuation .. 473
29.5 Summary .. 474
29.6 Exercises ... 475

30 The Plain LSLS Method .. 477
30.1 Implementation in VBA .. 477
30.2 Valuing the American put? .. 486
30.3 Summary .. 488
30.4 Exercises ... 488

31 Control Variates and the LSLS Method 491
31.1 Control variates and the American put 491
31.2 Control variates and the EEB .. 498
31.3 A two-pass LSLS ... 505
31.4 Summary .. 509
31.5 Exercises ... 511

Afterword ... 513

APPENDICES .. 515

A VBA and Excel .. 517
A.1 Setting up Excel .. 517
A.2 Compiler problems in VBA .. 518

B Some Option Formulae ... 523
B.1 Geometrically averaged average rate options 523
B.2 A quadratic payoff option .. 526
B.3 A Bermudan option .. 528

C The Utility Code Modules .. 531
C.1 The utility procedures ... 531
C.2 The complex number object ... 540
C.3 Quadrature ... 542

D Running DLLs from VBA ... 545

E Object-Oriented Programming .. 549
E.1 Motivation for objects .. 549
E.2 Properties of objects ... 553
E.3 Implementing objects in VBA .. 556
E.4 Patterns of object use .. 559
E.5 Summary .. 565
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F A Yukky Level 0 Monolithic Lattice Implementation</td>
<td>567</td>
</tr>
<tr>
<td>F.1 Lattice methods</td>
<td>567</td>
</tr>
<tr>
<td>F.2 Implementing a level 0 lattice method</td>
<td>570</td>
</tr>
<tr>
<td>F.3 Summary</td>
<td>578</td>
</tr>
<tr>
<td>G A Level 1 Crank–Nicolson PDE Implementation</td>
<td>581</td>
</tr>
<tr>
<td>G.1 PDE methods for derivative valuation</td>
<td>581</td>
</tr>
<tr>
<td>G.2 The Crank–Nicolson finite difference method</td>
<td>582</td>
</tr>
<tr>
<td>G.3 Implementing Crank–Nicolson</td>
<td>585</td>
</tr>
<tr>
<td>G.4 Assessment of the design</td>
<td>591</td>
</tr>
<tr>
<td>G.5 Successive over-relaxation (SOR)</td>
<td>595</td>
</tr>
<tr>
<td>G.6 Summary</td>
<td>602</td>
</tr>
<tr>
<td>H Root-Finding and Minimization Algorithms</td>
<td>603</td>
</tr>
<tr>
<td>H.1 Root finding algorithms</td>
<td>603</td>
</tr>
<tr>
<td>H.2 Minimization algorithms</td>
<td>610</td>
</tr>
<tr>
<td>H.3 Summary</td>
<td>612</td>
</tr>
<tr>
<td>VBA, Modelling, and Computing Glossary</td>
<td>613</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>619</td>
</tr>
<tr>
<td>Coding, Notational, and Typographical Conventions</td>
<td>621</td>
</tr>
<tr>
<td>Index to Code</td>
<td>623</td>
</tr>
<tr>
<td>Index to Spreadsheets</td>
<td>631</td>
</tr>
<tr>
<td>Index to Implementations</td>
<td>633</td>
</tr>
<tr>
<td>Index to Library Functions</td>
<td>637</td>
</tr>
<tr>
<td>Bibliography</td>
<td>641</td>
</tr>
<tr>
<td>Index</td>
<td>645</td>
</tr>
</tbody>
</table>